DSP LAB DEPT OF ECE MREC
DSP LAB DEPT OF ECE MREC

	[image: image549.png]

	MALLA REDDY ENGINEERING COLLEGE
(AUTONOMOUS)
An UGC Autonomous Institution, affiliated to JNTUH,
Accredited by NAAC with ‘A’ Grade & NBA and
Recipient of World Bank Assistance under TEQIP–II S.C.1.1
	[image: image2.png]V. &

= ACADEWIC EXCELLENCE

Industry Linked

Research Driven
Committed to Quality

DEPARTMENT OF Electronics AND communication ENGINEERING
LAB MANUAL

50430 – DIGITAL SIGNAL PROCESSING LAB
Prepared By Verified By Approved By

 Principal

Department Of Electronics and Communication

Engineering

LAB MANUAL

For
DIGITAL SIGNAL PROCESSING LAB

 III B.TECH - II SEMESTER

[image: image1.jpg]

MALLA REDDY ENGINEERING COLLEGE

(Autonomous)

Accredited by NAAC with ‘A’ Grade

Maisammaguda, Dhulapally, (post via Kompally)

Secunderabad-- AP.
INDEX
	Exp No
	NAME OF EXPERIMENT
	Pg No

	1
	Generation of Sinusoidal waveform / signal based on recursive difference equations.

	

	2
	To find frequency response of a given system given in (Transfer Function/ Differential equation form).

	

	3
	To find DFT / IDFT of given DT signal

	

	4
	Linear and Circular convolution using DFT and IDFT method

	

	5
	Implementation of FFT of given sequence

	

	6
	Determination of Power Spectrum of a given signal(s).

	

	7
	Implementation of Decimation Process

	

	8
	Implementation of Interpolation Process

	

	9
	Implementation of LP IIR filter for a given sequence

	

	10
	 Implementation of HP IIR filter for a given sequence

	

	11
	 Implementation of LP FIR filter for a given sequence

	

	12
	 Implementation of HP FIR filter for a given sequence

	

IMPORTANCE OF DSP LAB

DSP is an area of Science and Engineering that has developed rapidly over the past 40 years. The rapid development is a result of significant advances in digital computer technology and integrated circuit fabrication. The digital computers and associated hardware of four decades ago were relatively large and expensive and as a consequence their use was limited to general purpose non-real-time (off line) scientific computations and business applications.

The rapid development in integrated circuit technology starting with medium – scale integration and progressing to large scale integration. And now VLSI. Of electronic circuits has spurred the development of powerful smaller, faster and cheaper digital computers and special purpose digital hardware. These inexpensive and relatively fast digital circuits have made it possible to construct highly sophisticated digital systems capable of performing complex digital signal processing functions and tasks which usually too difficult and too expensive. Hence to perform the complex function and FIR, IIR filtering operations we need a powerful processor namely DSP Processor (TMS320C54XX-fixed point) and TMS320C6713-Floating point Architecture.

Course Objectives:

1. To study the time domain and the frequency domain representation of the discrete time signals

2. Use the Fast Fourier Transform in a variety of applications including: signal analysis, fast convolution, spectral and temporal interpolation, and filtering

3. To implement the IIR and FIR filters using MATLAB

4. To understand concept of sampling rate conversion
Course Outcomes:

1. Able to analyze signals using the discrete Fourier transform (DFT).

2. Understand circular convolution,its relationship to linear convolution, and how circular convolution can be achieved via the discrete Fourier transform.

3. Able to understand the decimation in time and frequency FFT algorithms for efficient computation of the DFT.

4. Able to design digital filters on paper and implement the design by using MATLAB.

EXPERIMENT-1

GENERATION OF SINUSOIDAL WAVEFORM BASED ON RECURSIVE DIFFERENCE EQUATION

AIM:
To develop a mat lab code for sinusoidal wave form based on recursive difference equation and to verify it using mat lab software.

APPARATUS REQUIRED:
 A System with mat lab software.

THEORY:
The several form of difference equation of an with[image: image4.png]

 order linear time invariant discrete time (LTI- DT) system is

 Y(n) = [image: image6.png]

y(n-k) + [image: image8.png]

X(n-k)

Where [image: image10.png]

 and [image: image12.png]

 are constants.
The response of any discrete time system can be decomposed as

Total response = zero state response + zero input response
The zero state response of the system is the response of the system due to input alon when the initial state of the system is zero/. That is, the system is intitially relazed at time n=0. The zero input response depends only on the initial state of the system that is the input is zero.

For ex, let us consider the first order DT system with difference equation
 y(n) = ay(n-1)+ x(n)

 x(n) and y(n) = input and output respectively,

Let the input sequence x(n) is zero for

[image: image14.png]n < 0 and the intital condition y(n— 1) # 0

The values of y(n) for n[image: image15.png]

0 are as follows

For n=0

y(0) = ay(-1)+ x(0)

y(1) = ay(0)+ x(1)

y(1) = [image: image17.png]

 y(-1)+ax(0)+x(1)

y(2) = ay(1)+ y(2)= a[image: image19.png][a® y(—1) + ax(0) + x(1)]

+x(2)

y(2) = [image: image21.png]

 y(-1)+[image: image23.png]

x(0)+ax(1)+x(2)

For any ‘n’

y(n) = [image: image25.png]a" ly(—1)+ X, a*x(n—k)forn=0

The response of y(n) includes two parts

1. The first parts depends on the initial condition of the system

2. The second term depends on input.

When y(-1) = 0 the output y(n) depends only on the input applied hence y(n) is known as the zero state response or forced response of the system given by
 Y f(n) = [image: image27.png]yr_,a¥x(n—k)fornz=0

If the system is initially non relaxed that is y(-1) [image: image29.png]#0

, and the input x(n) = 0 for all ‘n’ the output of the system y(n) depends only on the initial state of the system. Then the response of the system is called zero input response or natural response is given by
 [image: image31.png]y,(n) = a"y(—-1)

 n[image: image33.png]

.

[image: image536.png]y(n) = y;(n) + y,(n)

PROGRAM:

% Program for generation of Sinusoidal waveform / signal based
% on Recursive Difference Equations
%% Clear Section
clear all;
close all;
clc;
%% Signal Frequency and Sampling Frequency
%fs=input('enter the sampling frequency of the signal= ');
%f_hz=input('enter the signal frequency in Hz= ');
f_hz=1000 % Signal frequency (Change this value and test)
fs=8000 % Sampling frequency (change this value and test)
f0=2*pi*f_hz/fs % Sampled Signal Frequency in Radians
%% Calculation of y(n) coefficients
a1=2*cos(f0)
a2=-1
%% Calculation of x(n) coefficients
b1=sin(f0)
%xnm1=zeros(1,128); % Initialize the input to be zero
%% Initial values
xnm1=1
ynm1=0
ynm2=0
% Initializing output to zero
% output=zeros(1,200);
y1=zeros(1,20)
for i=1:200
 y1(i)=b1*xnm1+a1*ynm1+a2*ynm2 % Recursive Equation
 ynm2=ynm1
 ynm1=y1(i)
 xnm1=0
 %output(i)=y1(i);
end
%% Plot of Signal
plot(1:length(y1),y1);
xlabel('Time in Seconds');
ylabel('Amplitude of the Signal');
title(['Sinusoidal Signal of frequency ', num2str(f_hz), ' Hz'])

OUTPUT:
 [image: image34.emf]0 20 40 60 80 100 120 140 160 180 200

-1.5

-1

-0.5

0

0.5

1

Time in Seconds

Amplitude of the Signal

Sinusoidal Signal of frequency 1000 Hz

RESULT:
 Verified generation of sinusoidal signals based on recursive equation using mat lab software.

VIVA VOCE:

1. What is the difference between Sin & Cos signals?
2. What is meant by signal?
3. What is the difference between time domain & frequency domain signal?
4. What is the difference between periodic & a periodic signal.
5. What is the difference between orthogonal and orthogonal signals?

EXPERIMENT-2

FREQUENCY RESPONSE OF FIRST ORDER DT SYSTEM

AIM:

To develop a MATLAB code for frequency response of first order system and to verify it using MATLAB software.

APPARATUS REQUIRED:

System with MATLAB soft ware.

THEORY:

A First Order discrete time system is characterized difference equation.

 y(n) = x(n) + a. y(n-1)

Apply Fourier transformation on both sides

 [image: image36.png]y(e™)=x(e™)+ae™y(e™)

 [image: image38.png]y(e™)— ae™™ = X(e™)

 [image: image40.png]y(e™)1—ae™™]

=[image: image42.png]X(e™)

 H ([image: image44.png]

 = [image: image46.png]

 (This is the frequency response of first order system)

Frequency response can be expressed graphically as two functions i.e. magnitude function and phase function . the magnitude function of H([image: image48.png]

is defined as

 [image: image50.png][H(e™)|* =

H ([image: image52.png]e™)H*

([image: image54.png]

 = [image: image56.png]1-a eV

 X [image: image58.png]- aeW

 [image: image60.png][HEe™)|*

 [image: image62.png]1
(1-ae)(1-a

 = [image: image64.png]

 =[image: image66.png]1

1 —(cosw + jsinw) (acosw — jsinw) + a2

 =[image: image68.png]1

- acosw+ajsinw —acosw—ajsinw +a?

 = [image: image70.png]1

1 —acosw +ajsinw —acosw—ajsinw +a?

 =[image: image72.png]1 Z2acoswtaZ

 [image: image74.png][HEe™)|*

=[image: image76.png]1 Z2acoswtaZ

	The magnitude of the function H([image: image78.png]

) = [image: image80.png][H(e™)|

=[image: image82.png]

PHASE FUNCTION:

The phase function of H ([image: image84.png]

) is defined as

[image: image85.png]

Where [image: image87.png]H, oy

 is real part,
[image: image89.png]HJwy

 is imaginary part

To find real and imaginary parts of [image: image91.png]H(e)

 multiplying the numerator and denominator of [image: image93.png]H(e)

 by the complex conjugate of the denominator

 [image: image95.png]H(e)

 = [image: image97.png]

 X [image: image99.png]

 = [image: image101.png]1-alcoswtjsinw)
1 2acoswia®

 [image: image103.png]H(e)

 = [image: image105.png]1-acosw
Ey——

P y—

 [image: image107.png]¢H(e™®) = tan™

PROGRAM:

%frequency response of first order DT system
clc
close all
clear all
j=sqrt(-1)
w=[];mag_H1=[];mag_H2=[];pha_H1=[];pha_H2=[]
for w1=-pi:1:pi
 H1=1/(1-0.5*exp(-j*w1))
 H2=1/(1+0.5*exp(-j*w1))
 H1_M=abs(H1)
 H2_M=abs(H2)
 H1_p=angle(H1)
 H2_p=angle(H2)
 mag_H1=[mag_H1,H1_M]
 mag_H2=[mag_H2,H2_M]
 pha_H1=[pha_H1,H1_p]
 pha_H2=[pha_H2,H2_p]
 w=[w,w1]
end
figure(1)
subplot(2,2,1)
plot(w,mag_H1)
xlabel('w in rad')
ylabel('Magnitude of H1(jw)')
subplot(2,2,2)
plot(w,mag_H2)
xlabel('w in rad')
ylabel('Magnitude of H2(jw)')
subplot(2,2,3)
plot(w,pha_H1)
xlabel('w in rad')
ylabel('Phase of H1(jw) in rad.')
subplot(2,2,4)
plot(w,pha_H2)
xlabel('w in rad')
ylabel('Phase of H2(jw) in rad.')
%Another Method
b=[1]
a=[1, -0.5]
w=-pi:.1:pi
[h]=freqz(b,a,w)
x1=abs(h)
x2=angle(h)
figure(2)
subplot(2,1,1)
plot(w/pi,x1)
title('frequency response of Ith order system')
xlabel('Normalised frequency')
ylabel('Magnitude')
subplot(2,1,2)
plot(w/pi,x2)
title('frequency response of Ith order system')
xlabel('Normalised frequency')
ylabel('Phase in radians')
OUTPUT:

[image: image108.emf]-4 -2 0 2 4

0.5

1

1.5

2

w in rad

Magnitude of H1(jw)

-4 -2 0 2 4

0.5

1

1.5

2

w in rad

Magnitude of H2(jw)

-4 -2 0 2 4

-1

-0.5

0

0.5

1

w in rad

Phase of H1(jw) in rad.

-4 -2 0 2 4

-1

-0.5

0

0.5

1

w in rad

Phase of H2(jw) in rad.

[image: image109.emf]-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

frequency response of Ith order system

Normalised frequency

Magnitude

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

frequency response of Ith order system

Normalised frequency

Phase in radians

RESULT:

Verified the frequency response of first order system through the MATLAB software.

VIVA VOCE:

1. What is the difference between continuous time & discrete time Fourier transform?
2. What is the condition for convergence of Fourier transform?
3. What is the difference between discrete Time Fourier Transform (DTFT)& DFT?
4. What is the difference between Z transform & DFT?

EXPERIMENT-3

DFT & IDFT OF A GIVEN DISCRETE TIME SIGNAL

AIM:

 To develop a MATLAB code for corresponding N-point DFT and IDFT and to verify it using MAT LAB software.

APPARATUS REQUIRED:

System with MATLAB software.

THEORY:

The discrete fourier transform (DFT) of a discrete time signal x(n) is a finite duration discrete frequency sequence. The DFT sequence is demoted by X(K). The DFT is obtained by sampling one period of the fourier transform X(W) of signal X(n) at finite number of frequency points. This sampling is conventionally performed at N equally spaced points in the period 0 ≤ W ≤ 2π or at Wk=2πk/N ; 0 ≤ K ≤ N-1.

The Fourier transform of a discrete time signal is a continuous function of w and sop cannot be processed by digital system. The discrete Fourier transform converts the continuous function of w to a discrete function w . Thus DFT allows us to perform frequency analysis on a digital computer.

The DFT is important for two reasons . first it allows us to determine the frequency content of a signal , that is to perform spectral analysis. The second application of the DFT is to perform filtering operations in the frequency domain.

Let x(n) be a discrete time sequence with Fourier transform X(W) , then the DFT of

 X(n) denoted by X(K) is defined as

 X(K)=X(W)/W=2πk/N; for K=0,1,2,3,- - - - - - - - - - - (N-1)

The DFT of x(n) is a sequence consisting of N samples of X(W). the DFT sequence starts at k=0 correspond to [image: image111.png]

=0 but does not include K=N corresponding to [image: image113.png]

 =2π ([image: image115.png]the sample at w

=0 is same as the sample at[image: image117.png]

 =2π). Generally the DFT is defined along with number of samples and is called N-point DFT. The number of samples N for a finite duration sequence x(n) of length L should be such that N[image: image118.png]

L.

To calculate DFT of a sequence it is not necessary to compute Fourier transform since the DFT can be directly computed using the definition of DFT as given by equation.

Definition of DFT:

The N-point DFT of a finite duration sequence x(n) of length L , where N[image: image119.png]

L is defined as

 DFT[image: image121.png]{x(n)} = X(K)

 for k=0,1,2,3,- - - - - - - (N-1)

Definition of IDFT

The inverse discrete Fourier transform (IDFT) of the sequence x(k) of length N defined as

IDFT [image: image123.png]{X(K)} = x(n) = 1/N XN} X(K)el2mkn/N

 for n= 0,1,2,3 - - - - - - - - -(N-1)

x(n)[image: image125.png]

 X(K) is used to denote the N-point DFT pair x(n) and X(K).

PROGRAM:

 %N-point DFT
 clc
 close all
 clear all
 N=4
 j=sqrt(-1)
 xn=zeros(1,N)
 xn(1)=1/3
 xn(2)=1/3
 xn(3)=1/3
 xk=zeros(1,N)
 for k=0:1:N-1
 for n=0:1:N-1
 xk(k+1)=xk(k+1)+xn(n+1)*exp(-j*2*pi*k*n/N)
 end
 end
 disp('the dft seq is')
 xk
 disp('the magnitude sequence is')
 magxk=abs(xk)
 disp('the phase sequence is')
 phaxk=angle(xk)
 wk=0:1:N-1
 figure(1)
 subplot(2,1,1)
 stem(wk,magxk)
 title('manitude spectrum')
 xlabel('k')
 ylabel('magxk')
 subplot(2,1,2)
 stem(wk,phaxk)
 title('phase spectrum')
 xlabel('k')
 ylabel('phaxk')
%inverse DFT
 N=4
 j=sqrt(-1)
 xk=[1 -j*1/3 1/3 j*1/3]
xn=zeros(1,N)
 for n=0:1:N-1
 for k=0:1:N-1
 xn(n+1)=xn(n+1)+(xk(k+1)*exp(j*2*pi*n*k/N))/N
 end
 end
 disp('the inver se dft of the sequence is')
 xn
 OUTPUT:
The dft seq is

xk =

 1.0000 0 - 0.3333i 0.3333 + 0.0000i -0.0000 + 0.3333i

the magnitude sequence is

magxk =

 1.0000 0.3333 0.3333 0.3333

the phase sequence is

phaxk =

 0 -1.5708 0.0000 1.5708

the inver se dft of the sequence is

xn =0.3333 0.3333 - 0.0000i 0.3333 - 0.0000i 0.0000 + 0.0000i

[image: image126.emf]0 0.5 1 1.5 2 2.5 3

0

0.5

1

manitude spectrum

k

magxk

0 0.5 1 1.5 2 2.5 3

-2

-1

0

1

2

phase spectrum

k

phaxk

RESULT:

Verify the DFT and IDFT through the MAT LAB Software.

VIVA VOCE:

1. Define f DFT?
2. What is the use of DFT and IDFT?
3. What is the condition for convergence of Fourier transform?
4. What is the difference between discrete Time Fourier Transform (DTFT)& DFT?
 5. State correlation property of the DFT Transform

EXPERIMENT-4

LINEAR CONVOLUTION AND CIRCULAR CONVALUTION USING DFT/IDFT
AIM:

To develop the matlab code for linear and circular convolution and to verify it using matlab Software.

APPARATUS:

System with MATLAB Soft ware

THEORY:

The response or output of a LTI system for any arbitrary input is given by convolution of input x(n) and the impulse response h(n) of the system.

 Y(n) = [image: image128.png]o h(k)x(n—k)

 (or) y(n) = [image: image130.png]o X(k)h(n —k)

If input x(n) has N1 samples and the impulse response h(n) has N2 samples then the output sequence y(n) will be a finite duration sequce consisting of N1=N2-1 samples. The convolution results in non-periodic sequence. Hence this convolution is also called aperiodic convolution.

Procedure:

The process of computing the convolution between x(k) and h(k) involves the following steps .

1. Folding

: Fold h(k) about k=0, to obtain h(-k)
2. Shifting

: Shift h(-k) by [image: image132.png]

to the right [image: image134.png]

is positive , shift h(-k) by [image: image136.png]

to the left if [image: image138.png]

is negative to obtain h([image: image140.png]

-k).
3. Multiplication
: Multiply x(k) by h([image: image142.png]

-k) to obtain the product sequence
 [image: image144.png]

(k) =x (k) X h ([image: image146.png]

-k).
4. Summation : Summation all the values of the product sequence
[image: image148.png]

(k) to obtain the values of the output at time n= [image: image150.png]

([image: image152.png]

).

The above procedure results in the response of the system at a single time instant say n=[image: image154.png]

. In general we are interested in evaluating the response of the system over all the time instants -[image: image156.png]W<n< o

. Hence the steps 2 through 4 given above must be repeated , for all possible time shifts in the -[image: image158.png]W<n< o

.

If length of x(n) is N1 and length of h(n) is [image: image160.png]

then the length of y(n) is [image: image162.png]N,+N,—1

and the final value of n of y(n) is n=([image: image164.png]

+[image: image166.png]

)+([image: image168.png]N,+ N, —2)

.

PERFORMANCE OF LINEAR CONVOLUTION USING DFT:

The linear convolution of two sequences of length is [image: image170.png]N,and N,

 produces an output sequence of length is [image: image172.png]N,+N,

-1 .To perform linear convolution using DFT both the sequences should converted to is [image: image174.png]N,+N,—1

 point sequences by padding with zeros . Then take is [image: image176.png]N,+N,—1

 point DFT of both the sequences and determine the product of their DFTs . the resultant sequence is given by inverse DFT of product of DFTs.(Actually the response is given by circular convolution of the is [image: image178.png]N, + N, — 1 point sequences

)

Let x(n) be a [image: image180.png]

 point sequence and h(n) be a [image: image182.png]

 point sequence. The linear convolution of x(n) and h(n) produces a sequence y(n) of length is [image: image184.png]N,+N,—1

.

Let X(k) be is [image: image186.png]N, + N, — 1 point

DFT if x(n) and H(k) be is [image: image188.png]N,+N,—1

point DFT of h(n) . Now the sequence y(n) is given by inverse DFT of the product X(k)H(k).

[image: image537.png]y(n) = y;(n) + y,(n)

CIRCULAR CONVALUTION

The circular convolution of two sequences requires that, one of the sequence should be periodic. If both the sequences are non periodic, then periodically extend one of the sequence and then perform circular convolution.

The circular convolution can be performed only if both the sequences consists of same number of samples. If the samples has different number of samples, then convert the smaller size sequence to the size of larger sixe sequence by appending zeros. The circular convolution produces a sequence whose length is same as that of input sequence.

METHODS OF PERFORMING CIRCULAR CONVOLUTION:

METHOD 1:

GRAPHICAL METHOD:

In general method the given sequences are represented on circles. One of the sequence is folded and shifted circularly. Let [image: image190.png]

(n) and [image: image192.png]

(n) be the given sequences. Let [image: image194.png]

(m) be the sequence obtained by circular convolution of [image: image196.png]

(n) and [image: image198.png]

(n) . The following procedure can be used to get a sample of [image: image200.png]

(m) at m=q.

1. Represent the given sequences on circles.

2. Fold one of the sequence. Let us fold [image: image202.png]X

(n) to get [image: image204.png]X

(-n).

3. Rotate (or shift) the sequences [image: image206.png]X

(-n) , q times to get the sequence [image: image208.png]X

(q-n). If q is positive then rotate (or shift) the sequence in anti clockwise direction and if q is negative then rotate (or shift) the sequence in clockwise direction.

4. The sample of [image: image210.png]X3

(m) at m = q is given by

x(q) =[image: image212.png]m=0%1(n)x2(q —n)

 = [image: image214.png]m=0%1(n)x2,4(n)

 , where [image: image216.png]X24(0)

 [image: image218.png]x2(q —n)

Determine the product sequence [image: image220.png]x1(n)xz4 (0)

 for period.

5. The sum of all the samples of the product sequence gives the sample x(q) [image: image222.png]li.e.,x(m)at m = q

METHOD 2:

MATRICES METHOD

Let [image: image224.png]

(n) and [image: image226.png]

(n) be the given N-point sequences. The circular convolution of [image: image228.png]

(n) and [image: image230.png]

(n) yields another N-point sequence [image: image232.png]

(m).

In this method an (NXN) matrix is formed using one of the sequence as shown below. Another sequence is arranged as a column vector (column matrix) of order (NX1). The product of the two matrices gives the resultant sequence [image: image234.png]

(m).

[image: image538.emf](){()()}

RExnxn

tt

=+

(){()()} RExnxn  

[image: image539.emf]1

1

lim()()

N

N

n

xnxn

N

t

®¥

=

=+

å

1

1

lim()()

N

N

n

xnxn

N











[image: image540.emf]1

1

1

ˆ

()(())lim()

1

()(())()

2

N

j

N

N

j

SFTRRe

RFTSSed

wt

t

wt

wtt

twww

p

-

-

®¥

=-+

-

==

==

å

ò

1

1

1

ˆ

()(())lim()

1

()(())()

2

N

j

N

N

j

SFTRRe

RFTSSed































[image: image541.png]C67x device

Program cache/program memory
32-bit address
256-bit data

C67x CPU

Program fetch

Instruction dispatch (See Note) Control
registers

Instruction decode

Data path A Data path B

Register file A Register file B

DMA, EMIF

Emulation

Interrupts

Additional
peripherals:

Timers,
serial ports,
etc.

Data cache/data memory
32-bit address

8-, 16-, 32-bit data

[image: image542.png]TMS320C6713

FLOATING-POINT DIGITAL SIGNAL PROCESSOR

[N

o

PRODUCT PREVIEW

[image: image543.png]

 [image: image236.png]

(0) [image: image238.png]

(N-1) - - - - [image: image240.png]

(1) [image: image242.png]

(0)

 [image: image244.png]

(1) [image: image246.png]

(N-2) - - - - [image: image248.png]

(2) [image: image250.png]

(1)

.
.
.
.
. . .
 . =

.
.

.
.
.
.
. . . .

 [image: image252.png]

(N-1) [image: image254.png]

(N-2) - - - - [image: image256.png]

(0)

PROGRAM:

Linear Convolution between sequences using normal method and DFT and IDFT
 %method
clc;
close all;
clear all;
x=input('enter the length of the sequence') %[1 2 3 4]
h=input('enter the length of the second sequence') %[1 1 2 3]
y=conv(x,h) %[1 3 7 14 16 17 12]
figure(1)
subplot(3,1,1)
stem(x)
xlabel('n')
ylabel('amplitude')
title('first sequence')
subplot(3,1,2)
stem(h)
xlabel('n')
ylabel('amplitude')
title('second sequence')
subplot(3,1,3)
stem(y)
xlabel('n')
ylabel('amplitude')
title('convolved sequence')
%using DFT and IDFT method
xL=length(x)
hL=length(h)
L=xL+hL-1
xl=[x,zeros(1,hL-1)]
hl=[h,zeros(1,xL-1)]
y1=fft(x,L)
y2=fft(h,L)
y3=y1.*y2
yn=ifft(y3)
%circular convolution

%circular convalution
clc
close all
clear all
x=input('enter the first sequence')
h=input('enter the second sequence')
n1=length(x)
n2=length(h)
if n1<n2
 x=[x, zeros(1,n2-n1)]
 h=[h, zeros(1,n1-n2)]
end
if n2<n1
 x=[x, zeros(1,n2-n1)]
 h=[h, zeros(1,n1-n2)]
end
n4=length(h)
n3=length(x)
x=x'
h=h'
h1=h
for l=1:1:n3-1
 h=circshift(h,1)
 h1=[h1 h]
end
disp('matrix h1')
disp(h1)
%another method

x=input('enter input x(n)')
m=length(x)
h=input('entre the inputh(n)')
n=length(h)
 if(m-n~=0)
 if(m>n)
 h=[h,zeros(1,m-n)]
 n=m
 end
 x=[x,zeros(1,n-m)]
 m=n
end
y=zeros(1,n)
y(1)=0
a(1)=h(1)
for j=2:n
 a(j)=h(n-j+2)
end
for i=1:n
 y(1)=y(1)+x(i)*a(i)
end
for k=2:n
 y(k)=0
 for j=2:n
 x2(j)=a(j-1)
 end
 x2(1)=a(n)
 for i=1:n
 if(i<n+1)
 a(i)=x2(i)
 y(k)=y(k)+x(i)*a(i)
 end
 end
end
y
 OUTPUT:
 [image: image257.emf]1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

n

amplitude

first sequence

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.5

1

n

amplitude

second sequence

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0

1

2

n

amplitude

convolved sequence

enter the length of the sequence[1 0.5]
x = 1.0000 0.5000

enter the length of the second sequence[0.5 1]

h = 0.5000 1.0000

y = 0.5000 1.2500 0.5000

xL = 2

hL = 2

L = 3

xl = 1.0000 0.5000 0

hl = 0.5000 1.0000 0

y1 = 1.5000 0.7500 - 0.4330i 0.7500 + 0.4330i

y2 = 1.5000 0 - 0.8660i 0 + 0.8660i

y3 = 2.2500 -0.3750 - 0.6495i -0.3750 + 0.6495i

yn = 0.5000 1.2500 0.5000

[image: image258.emf]0 0.5 1 1.5 2 2.5 3

0

2

4

n

amplitude

first sequence is

0 0.5 1 1.5 2 2.5 3

0

2

4

n

amplitude

second sequence is

0 0.5 1 1.5 2 2.5 3

0

20

40

n

amplitude

output sequence is

enter the first sequence[1 2 3 4]

x = 1 2 3 4

enter the second sequence[4 3 2 1]

h = 4 3 2 1

n1 = 4

n2 = 4

n4 = 4

n3 = 4

x = 1

 2

 3

 4

h =4

 3

 2

 1

h1 =4

 3

 2

 1

h =1

 4

 3

 2

h1 =4 1

 3 4

 2 3

 1 2

h = 2

 1

 4

 3

h1 =4 1 2

 3 4 1

 2 3 4

 1 2 3

h =3

 2

 1

 4

h1 =4 1 2 3

 3 4 1 2

 2 3 4 1

 1 2 3 4

matrix h1 4 1 2 3

 3 4 1 2

 2 3 4 1

 1 2 3 4

y =24

 22

 24

 30

out put sequence is [24 22 24 30]

RESULT:

Verified the Linear and circular Convolution through the MAT LAB Software.

VIVA VOCE:

1. What is the requirement for convolution?

2. What is the difference between convolution & correlation?

3. What us the length of linear convolution if length of input & impulse responses are N1 & N2 respectively?
4. Why we need circular convolution?
5. What is the difference between circular & linear convolution?
6. What is the length of output sequence after circular convolution if the lengths of input & impulse responses are M1 & M2 respectively?
7. State the circular convolution property of DFT?
8. Where we required convolution property?

EXPERIMENT-5
IMPLEMENTATION OF FFT OF A GIVEN SEQUENCE

AIM:

To develop a matlab code for FFT of a given sequence and verify it using matlab soft ware.

APPARATUS:

System with MATLAB software

THEORY:

The Fast Fourier transform algorithm explain the two basic properties of the twiddle factor [image: image260.png]

(symmetric properties and periodic properties) and reduces the number of complex multiplications required to perform DFT from [image: image262.png]

to[image: image264.png]

 and number of additions is N[image: image266.png]log, N

.

FFT algorithm are based on the fundamental principle of decomposing the computation of discrete Fourier transform of sequence of length ‘N’ into successfully smaller discrete Fourier transforms. They are basically 2 classes of FFT algorithms. They are

1. Decimation- In- Time (DIT)

2. Decimation- In- Frequency (DIF)

In decimation in time, the sequence for which we need the DFT is successively divided into smaller sequences and the DFTs of these sub sequences are combined in a pattern to obtain the required DFT of the entire sequence. In the DIF approach, the frequency samples of the DFT are decomposed into smaller and smaller subsequences in a similar manner.

Radix – r FFT:

In an N-point sequence , if ‘N’ can be expressed as N=[image: image268.png]

 , then it is called radix –r FFT where r=radix and m=number of stages in the FFT algorithm for exampler if N=8 [image: image269.png]

 [image: image271.png]

 Here r=2,m=3 so its radix -2 FFT with 3 stages.

Radix-2FFT:

Here, decimate means breaks into 2 parts . So, DIF means (or) indicates the dividing (or) splitting the sequences in time domain. In DIT, the time domain sequence x(n) is decimated and smaller point DFTs are computed. The results of smaller point DFTs are combined to get the results of N-point DFT.

The N-point FFT can be realized from 2 numbers of N/2 point DFTs the N/2 point DFT can be realized from 2 numbers of N/4 point DFTs and so on.

8-POINT DFT USING RADIX-2 DFTFFT ALGORITHM:

Here N=8 [image: image273.png]—»r™m =23

 , therefore r=2 [image: image274.png]

radix;

m=3 [image: image275.png]

 number of stages.

N=8[image: image276.png]

0 to 7 samples.

Let x(n) = x(0), x(1), x(2), x(3), x(4), x(5), x(6), and x(7). Be the 8 samples.

These 8 samples should be decimated into sequences of 2 samples. Before decimation they are arranged in bit reversed order of binary representation.

	Normal order
	Bit reversal order

	x(0)[image: image278.png]

 x(000)

x(1)[image: image280.png]

 x(001)

x(2)[image: image282.png]

 x(010)

x(3)[image: image284.png]

 x(011)

x(4)[image: image286.png]

 x(100)

x(5)[image: image288.png]

 x(101)

x(6)[image: image290.png]

 x(110)

x(7)[image: image292.png]

 x(111)
	x(0)[image: image294.png]

 x(000)

x(4)[image: image296.png]

 x(100)

x(2)[image: image298.png]

 x(010)

x(6)[image: image300.png]

 x(110)

x(1)[image: image302.png]

 x(001)

x(5)[image: image304.png]

 x(101)

x(3)[image: image306.png]

 x(011)

x(7)[image: image308.png]

 x(111)

For DITFFT algorithm the input is in the bit reversed order and output is in the normal order. The combined butterfly diagram for 8-point DITFFT algorithm is as shown below.

The following procedure can be followed to compute IDFT using FFT algorithm.

1. Take N-point frequency domain sequence x(k) ad input sequence

2. Compute FFT using conjugate and phase factors.

3. Divide the output sequence obtained in FFT computation by ‘N’ to get the sequence x(n).

PROGRAM:

% implimentation of FFT for a given sequence
N=8
xn=[2 2 2 2 1 1 1 1]
disp('the dft of the sequence xn is')
xk=fft(xn,N)
disp(' the magnitude sequence is')
magxk=abs(xk)
disp('the phase sequence is')
phaxk=angle(xk)
n=0:1:N-1
wk=0:1:N-1
figure(2)
subplot(3,1,1)
stem(n,xn)
title('input sequence is')
 xlabel('n')
 ylabel('xn')
 subplot(3,1,2)
 stem(wk,magxk)
 title('magnitude spectrum')
 xlabel('k')
 ylabel('magxk')
 subplot(3,1,3)
 stem(wk,phaxk)
 title('phase spectrum')
 xlabel('k')
 ylabel('phaxk')
disp('inverse dft of the sequence is')
xn=ifft(xk)
OUTPUT:

N =8

xn = 2 2 2 2 1 1 1 1

the dft of the sequence xn is

xk =Columns 1 through 4

12.0000 1.0000 - 2.4142i 0 1.0000 - 0.4142i

Columns 5 through 8

0 1.0000 + 0.4142i 0 1.0000 + 2.4142i

 the magnitude sequence is

magxk =

12.0000 2.6131 0 1.0824 0 1.0824 0 2.6131

the phase sequence is

phaxk =

0 -1.1781 0 -0.3927 0 0.3927 0 1.1781

[image: image309.emf]0 1 2 3 4 5 6 7

0

1

2

input sequence is

n

xn

0 1 2 3 4 5 6 7

0

10

20

magnitude spectrum

k

magxk

0 1 2 3 4 5 6 7

-2

0

2

phase spectrum

k

phaxk

RESULT:

The matlab program to perform 8-point FFT is verified.

VIVA VOCE:

1. Why we need FFT?
2. What is the difference between decimation in time (DIT FFT) & Decimation in frequency (DIFFFT) algorithms?

EXPERIMENT - 6
DETERMINATION OF POWER SPECTRUM OF A GIVEN SIGNAL

AIM:

To develop a mat lab code for power spectrum of a given signal and to verify using mat lab software.

APPARATUS:

A System with mat lab software

THEORY:

For given signal, the power spectrum gives a plot of the portion of signals power (energy for unit time) falling within given frequency bn . The most common way of generating a power spectrum is given by using a discrete Fourier transform.

The correlation and spectral density , which are the most valuable tools for analyzing signals are related through the wiener kintcheine, which states that the energy spectral density of an energy signal is the Fourier transform of its auto correlation.

Mathematically it is expressed as

 [image: image311.png]

([image: image313.png]

) = F[image: image315.png]

 = [image: image317.png]T (0) €777

d[image: image319.png]

Where the operator “F” stands for the FT, [image: image321.png]Tex (T)

 is the auto correlation of the continuous the signal x(t) and [image: image323.png]S (@)

 is the energy spectral density of the signal x(t). Conversal we can also write the above equation as

[image: image325.png]

 = [image: image327.png]S (@) €777

d[image: image329.png]

PROGRAM:

% Determine the power spectrum of a given signal.
%power spectrum of a given signal
%power spectrum of a given signal
clc
close all
clear all
Fs=100
t=0:1/Fs:10
x=sin(2*pi*15*t)+sin(2*pi*30*t)
N=512
y=fft(x,N)
f=Fs*(0:N-1)/N
power=y.*conj(y)/N
figure(1)
plot(t,x)
title('sinusoidal signal')
xlabel('time')
ylabel('amplitude')
figure(2)
plot(f,power)
title('power spectrum through fourier transform')
xlabel('frequency f')
ylabel('power')
figure(3)
rxx=xcorr(x,x)
Sxx=fft(rxx,512)
plot(f,abs(Sxx))
title('fourier transform of autocorrelation')
xlabel('frequency f')
ylabel('abs(Sxx)')
OUT PUT:

[image: image330.emf]0 1 2 3 4 5 6 7 8 9 10

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

sinusoidal signal

time

amplitude

[image: image331.emf]0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

power spectrum through fourier transform

frequency f

power

[image: image332.emf]0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

power spectrum through fourier transform

frequency f

power

RESULT:

Verified Power Spectrum Density of given Signal using MAT LAB Software.

VIVA VOCE:

1. What is the difference between correlation & auto correlation function?
2. What is the difference between PSD & ESD?
3. What is the unit for energy density spectrum?
4. What is the formula for PSD of a function?
5. What is the unit for power density spectrum?
6. What is the relation between auto correlation & PSD of a function?

EXPERIMENT – 7
IMPLIMENTATION OF DECIMATION

AIM:

To develop a matlab code for decimation process and to verify using matlab software.

APPATATUS:

A system with mat lab software.

THEORY:

DOWN SAMPLING:

The sampling rate of discrete – time signal x(n) can be reduced by a factor M by takin every Mth value of the signal.

 Y(n)= x(Mn)

The output signal y(n) is a down sampled signal of the input signal x(n).

Spectrum of down sampling signal

 [image: image334.png]

The down sampled signal y(n) is obtained by multiplying the sequence x(n) with a periodic tain of impulses p(n) with

ALIASING EFFECT:

The spectrum obtained after down sampling will overlap if the original spectrum is not band limited to [image: image336.png]|8

PROGRAM:

 %%Implimentation of Decimation process
 clc
close all
clear all
N=50
n=0:1:N-1
x=sin(2*pi*n/20)+sin(2*pi*n/15)
M=2
x1=x(1:M:N)
n1=1:1:N/M
x12=decimate(x,M)
 subplot(2,1,1)
stem(n,x)
grid
xlabel('n')
ylabel('x')
title('input sequence')
subplot(2,1,2)
stem(n1-1,x1)
grid
xlabel('n')
ylabel('x')
title('downsampled sequence')
figure(2)
subplot(1,1,1)
stem(n1-1,x12)
grid
xlabel('n')
ylabel('x')
title('downsampled sequence')
OUTPUT:
[image: image337.emf]0 5 10 15 20 25 30 35 40 45 50

-2

-1

0

1

2

n

x

input sequence

0 5 10 15 20 25

-2

-1

0

1

2

n

x

upsampled sequence

[image: image338.emf]0 5 10 15 20 25

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

n

x

upsampled sequence

RESULT:

Verified decimation using mat lab software.

VIVA VOCE:

1. Define Decimation?

2. Properties of impulse response?

3. Define LTI system?

4. Define first order and second order system?

EXPERIMENT - 8
IMPLIMENTATION OF INTERPOLATION

AIM:

 To develop a matlab code for interplolation process and to verify using matlab software.

APPATATUS REQUIRED:

 A system with mat lab software.

THEORY:

UP SAMPLING:

The sampling rate of a discrete time signal can be decreased by a factor L by placing L-1 equally spaced zeros between each pour of samples.

 Y(n) = [image: image340.png]{x(’f n=0FL%2L

0 otherwise

 Y(z) = [image: image342.png]

 Y([image: image344.png]jw

) = X([image: image346.png]elwl

)

ANTI IMAGING FILTER:

The frequency spectrum of up sampled signal y(n) with factor L contains L-1 additions images of the input spectrum , there L-1 images are due to addition of L-1 zero samples are due to addition of L-1 zero samples between successive samples x(n).

PROGRAM:

% Illustration of Interpolation Process
 %Implimentation of interpolation process
clc
close all
clear all
N=10
n=0:1:N-1
x=sin(2*pi*n/10)+sin(2*pi*n/5)
L=3
x1=[zeros(1,L*N)]
n1=1:1:L*N
j=1:L:L*N
x1(j)=x
x12=interp(x,L)
subplot(2,1,1)
stem(n,x)
grid
xlabel('n')
ylabel('x')
title('input sequence')
 subplot(2,1,2)
stem(n1,x1)
grid
xlabel('n')
ylabel('x')
title('upsampled sequence')
 figure(2)
subplot(1,1,1)
stem(n1,x12)
grid
xlabel('n')
ylabel('x')
title('upsampled sequence')

OUTPUT:[image: image347.emf]0 1 2 3 4 5 6 7 8 9

-2

-1

0

1

2

n

x

input sequence

0 5 10 15 20 25 30

-2

-1

0

1

2

n

x

upsampled sequence

 [image: image348.emf]0 5 10 15 20 25 30

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

n

x

upsampled sequence

EXPERIMENT-9
IIR LOW PASS FILTER

AIM:

To develop a mat lab code for IIR low pass filter and to verify it using matlab software.

APPARATUS:

A system with MATLAB software

THEORY:

The magnitude function of the iir lowpass filter is given by

 [image: image350.png]|H(GQ) |

 = [image: image352.png]

Where N is the order of the filter and [image: image354.png]

 is the cut off frequency. The function ins monotonically decreasing , whre the maximum response is unity at Ω=0 . The ideal response is shown by the dash line . It can be seen that the magnitude response approaches the ideal lowpass characteristics as the order “N” increases for values Ω=[image: image356.png]

.

[image: image358.png]|H(GQ) |

= 1 for Ω[image: image360.png]>Q,

, the value of [image: image362.png]|H(GQ) |

 decreases rapidly. At Ω=[image: image364.png]

 the curve pass through 0.707 , which corresponds to -3db point from given equation. We can set magnitude sequence function of a normalized iir filter is

 [image: image366.png][H(Q) |?

 = [image: image368.png]1+()

 N= 1,2,3, - - - --------------

Now let us

1. From the given specifications find the order of filter ‘N’.

2. Round off it to the next higher integer find the transfer function H(s) for [image: image370.png]0, =rad /sec

 for the value of ‘N’.

3. Calculate the value of cutoff wavelength ‘[image: image372.png]

’ find the transfer function H(s) for the above [image: image374.png]

 by substituting S→S/[image: image376.png]

 in H(S).

4. The magnitude response of iir filter decreases monotonically as the frequency ‘Ω’ increases from 0 to ∞.

5. The transition band is more in iir filter when compared to chebschev filter.

6. The process of the iir filter lies on [image: image378.png]Ale

 , where as the poles of chebshev filter.

For the same specifications, the numbers of poles in iir are more compared to chebshev filter.

PROGRAM:

% IIR filters LPF
clc;
clear all;
close all;
disp('enter the IIR filter design specifications');
rp=input('enter the passband attenuation')
rs=input('enter the stopband attenuation')
 fp=input('enter the passband freq')
 fs=input('enter the stopband freq')
 f=input('enter the sampling freq')
wp=2*fp/f
ws=2*fs/f
%to find cut off frequency and crder of the filter
disp('order n')
[n,wn]=buttord(wp,ws,rp,rs)
%system function of the filter
 disp('Frequency response of IIR LPF is:')
 [b,a]=butter(n,wn,'low')
w=0:.1:pi
[h]=freqz(b,a,w)
m=20*log10(abs(h))
an=angle(h)
figure(1)
subplot(2,1,1)
plot(w/pi,m)
grid
title('magnitude response of IIR LPF filter is:')
xlabel('(a) Normalized freq. -->')
ylabel('Gain in dB-->')
subplot(2,1,2)
plot(w/pi,an)
grid
title('phase response of IIR LPF filter is:')
xlabel('(b) Normalized freq. -->')
ylabel('Phase in radians-->')
OUT PUT:

enter the IIR filter design specifications

enter the passband attenuation4

rp =4

enter the stopband attenuation30

rs =30

enter the passband freq400

fp =400

the stopband freq800

fs =800

the sampling freq2000

f =2000

wp =0.4000

ws =0.8000

order n

n =3

wn =0.4914

Frequency response of IIR LPF is:

b =0.1600 0.4800 0.4800 0.1600

a =1.0000 -0.0494 0.3340 -0.0045

[image: image379.emf]0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-150

-100

-50

0

magnitude response of IIR LPF filter is:

(a) Normalized freq. -->

Gain in dB-->

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-4

-2

0

2

4

phase response of IIR LPF filter is:

(b) Normalized freq. -->

Phase in radians-->

RESULT:

Verified IIR low pass filter using mat lab software.

VIVA VOCE:

1. What is meant by IIR LOW PASS filter?
2. What is the difference between recursive & non-recursive systems?
3. Write the difference equation for IIR system?

4. Explain the pole mapping procedure of Impulse invariant & bilinear transformation method?

5. For given same specification which difference we found in Butter worth & chebyshev filter?

6. What is the difference between type I & type II Chebyshev filters?

7. Where the poles are located for Butter worth & chebyshev filters?
8. What is meant by spectral transformation?
9. Why we need spectral transformation in IIR filter?

EXPERIMENT - 10
IIR HIGH PASS FILTER

AIM:

 To develop a mat lab code for IIR low pass filter and to verify it using matlab software.

APPARATUS:

System with MATLAB software

THEORY:

The magnitude function of the IIR high pass filter is given by

 [image: image381.png]|H(GQ) |

 = [image: image383.png]

Where N is the order of the filter and [image: image385.png]

 is the cut off frequency. The function ins monotonically decreasing, where the maximum response is unity at Ω=0 . The ideal response is shown by the dash line. It can be seen that the magnitude response approaches the ideal low pass characteristics as the order “N” increases for values Ω=[image: image387.png]

.

[image: image389.png]|H(GQ) |

= 1 for Ω[image: image391.png]>Q,

, the value of [image: image393.png]|H(GQ) |

 decreases rapidly. At Ω=[image: image395.png]

 the curve pass through 0.707 , which corresponds to -3db point from given equation. We can set magnitude sequence function of a normalized IIR filter is

 [image: image397.png][H(Q) |?

 = [image: image399.png]1+()

 N= 1, 2, 3, - - -

Now let us

1. From the given specifications find the order of filter ‘N’.

2. Round off it to the next higher integer find the transfer function H(s) for [image: image401.png]0, =rad /sec

 for the value of ‘N’.

3. Calculate the value of cutoff wavelength ‘[image: image403.png]

’ find the transfer function H(s) for the above [image: image405.png]

 by substituting S→S/[image: image407.png]

 in H(S).

4. The magnitude response of IIR filter decreases monotonically as the frequency ‘Ω’ increases from 0 to ∞.

5. The transition band is more in IIR filter when compared to chebyschev filter.

6. The process of the IIR filter lies on [image: image409.png]Ale

 , where as the poles of chebyshev filter.

For the same specifications, the numbers of poles in IIR are more compared to chebyshev filter.

PROGRAM:

% IIR filters HPF
clc;
clear all;
close all;
disp('enter the IIR filter design specifications');
rp=input('enter the passband attenuation')
rs=input('enter the stopband attenuation')
 fp=input('enter the passband freq')
 fs=input('enter the stopband freq')
 f=input('enter the sampling freq')
wp=2*fp/f
ws=2*fs/f
%to find cut off frequency and crder of the filter
disp('order n')
[n,wn]=buttord(wp,ws,rp,rs)
%system function of the filter
 disp('Frequency response of IIR LPF is:')
 [b,a]=butter(n,wn,'high')
w=0:.1:pi
[h]=freqz(b,a,w)
m=20*log10(abs(h))
an=angle(h)
figure(1)
subplot(2,1,1)
plot(w/pi,m)
grid
title('magnitude response of IIR HPF filter is:')
xlabel('(a) Normalized freq. -->')
ylabel('Gain in dB-->')
subplot(2,1,2)
plot(w/pi,an)
grid
title('phase response of IIR HPF filter is:')
xlabel('(b) Normalized freq. -->')
ylabel('Phase in radians-->')
 OUTPUT:

enter the IIR filter design specifications

enter the passband attenuation4

rp =4

enter the stopband attenuation30

rs =30

enter the passband freq800

fp =800

enter the stopband freq400

fs =400

enter the sampling freq2000

f =2000

wp =0.8000

ws =0.4000

order n

n =3

wn =0.7386

Frequency response of IIR LPF is:

b =0.0354 -0.1061 0.1061 -0.0354

a =1.0000 1.3911 0.8566 0.1826

[image: image410.emf]0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-100

-50

0

magnitude response of IIR LPF filter is:

(a) Normalized freq. -->

Gain in dB-->

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-4

-2

0

2

4

phase response of IIR LPF filter is:

(b) Normalized freq. -->

Phase in radians-->

RESULT:

The mat lab code for IIR high pass filter is verified.

VIVA VOCE:

1. What are IIR analog filters? What are the advantages & disadvantages of them?
2. What is the disadvantage in impulse invariance method?
3. What does warping effect mean? Where we found this effect? How can we eliminate warping effect?

4. Explain the pole mapping procedure of Impulse invariant & bilinear transformation method?

5. For given same specification which difference we found in Butter worth & Chebyshev filter?
EXPERIMENT-11
FIR LOW PASS FILTER

AIM:

To develop mat lab code for FIR LPF using different windowing techniques and verified it using mat lab software.

APPARATUS:

System with mat lab software.

THEORY:

The filters designed by using finite number of samples of impulse response are called FIR filters. These finite no. of samples are obtained from the finite duration designed impulse hd(n). Here hd(n) is the inverse Fourier transform of hd([image: image412.png]

), where hd([image: image414.png]

) is the ideal (desired) frequency response. The various methods of designing FIR filters differs only in the method of determining the samples of hn(n) from the samples of hd(n).

ADVANTAGES OF FIR FILTERS:

1. FIR filters with exactly linear phase can be easily achieved.

2. Efficient realization of FIR filters exist as both recursive and non-recursive structures.

3. Round off notice, which is inherent in realizations with finite precision arithmetic can easily be made small for non-recursive realization of FIR filters.

FIR FILTERS DESIGN USING WINDOWS:

1. Clearly specify the filter specifications

Eg:
order’N’= 11

sampling rate “[image: image416.png]fz

” = 1000 samples /sec.

cutoff frequency = 0.5*[image: image418.png]p;

2. Compute the cutoff frequency ‘[image: image420.png]

’ = [image: image422.png]SPife
A

 = 0.5*[image: image424.png]p;

3. Choose the desired frequency response of the filter Hd([image: image426.png]

).

4. Take inverse Fourier transform of Hd([image: image428.png]

) to obtain the desired impulse response hd(n). by definition of inverse Fourier transform .

Hd(n) = [image: image430.png]i o Hd(w)e“" dw.

5. Choose a window sequence [image: image432.png]w(n)

 and determine the product of hd(n) and [image: image434.png]w(n)

. Let this product be h(n)

H(n)=hd(n)w(n)

6. The transfer function H(z) of the filter is obtained by taking z-transform of h(n).

The main advantage of windowing is that it is reasonably straight forward to obtain the filter impulse response with minimal computational effort. The major reasons for the relative success of windows are their simplicity and ease of use and the fact that closed from expressions are often available for the window Coefficients. the main advantage of this techniques is that the resulting FIR filters satisfy no known optimality criterion (such as specified attenuation at [image: image436.png]ws and w,

) hence their performance have to be considerably improved in most cases.

[image: image544.png]

[image: image545.emf]0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

normalised frequency

magnitude

low pass filter using rectangular and triangular window

rectangular window

triangular window

[image: image546.wmf](){()()}

RExnxn

tt

=+

triangular window or bartlet

[image: image547.wmf]1

1

lim()()

N

N

n

xnxn

N

t

®¥

=

=+

å

[image: image548.wmf]1

1

1

ˆ

()(())lim()

1

()(())()

2

N

j

N

N

j

SFTRRe

RFTSSed

wt

t

wt

wtt

twww

p

-

-

®¥

=-+

-

==

==

å

ò

rectangular
hamming

Kaiser
hanning

PROGRAM:

%FIR lowpass filter using rectangular and triangular window
clc
close all
clear all
fc=250
fs=1000
wc=0.5*pi
N=11
alpha=(N-1)/2
eps=0.001
n=0:1:N-1
hd=sin(wc*(n-alpha+eps))./(pi*(n-alpha+eps))
wr=boxcar(N) %rectwin
hn=hd.*wr'
w=0:.1:pi
h=freqz(hn,1,w)
figure(1)
plot(w/pi,abs(h),'r')
disp(hn)
hold on
wt=bartlett(N)

hn=hd.*wt'
w=0:.1:pi

h=freqz(hn,1,w)
plot(w/pi,abs(h))
disp(hn)
xlabel('normalised frequency')
ylabel('magnitude')
title('low pass filter using rectangular and triangular window')
legend('rectangular window','triangular window')
%FIR lowpass filter using hamming and hanning windows
wc=0.5*pi
N=11
alpha=(N-1)/2
eps=0.001
n=0:1:N-1
hd=sin(wc*(n-alpha+eps))./(pi*(n-alpha+eps))
wh=hamming(N)
hn=hd.*wh'
w=0:.1:pi
h=freqz(hn,1,w)
figure(2)
plot(w/pi,abs(h),'r')
disp(hn)
hold on
wha=hanning(N)
hn=hd.*wha'
w=0:.1:pi
h=freqz(hn,1,w)
plot(w/pi,abs(h),'g')
disp(hn)
xlabel('normalised frequency')
ylabel('magnitude')
title('low pass filter using hamming and hanning window')
legend('hamming window','hanning window')
OUT PUT:

[image: image437.emf]0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

normalised frequency

magnitude

low pass filter using hamming and hanning window

hamming window

hanning window

RESULT: verified low pass FIR using mat lab software.

VIVA VOCE:

1. Advantages of FIR filters over IIR filters?

2. Comparison between IIR and FIR filters?

3. Comparison between different windowing techniques?

4. Explain the FIR filter design?
EXPERIMENT - 12
FIR HIGH PASS FILTER

AIM:

To develop a matlab code for FIR HPF using different windowing techniques and verified it using matlab software.

APPARATUS:

A system with matlab software

THEORY:

The filters designed by using finite number of samples of impulse response are called FIR filters. These finite number of samples are obtained from the finite duration designed impulse hd(n). Here hd(n) is the inverse fourier transform of Hd([image: image439.png]

), where Hd([image: image441.png]

) us the ideal(desired) frequency response the various methods of designing FIR filters differs only in the method of determining the samples of h(n) from the samples of hd(n)

ADVANTAGES OF FIR FILTERS:

1. FIR filters with exactly linear phase can be easily achieved.

2. Efficient realization of FIR filters exists as both recursive and non-recursive structures

3. Round off noise, which is inherent in realization with finite precision arithmetic can easily be made small for non-recursive realization of FIR filters.

FIR FILTERS DESIGN USING WINDOWS:

1. Clearly specify the filter specification

Eg. Order ‘N’ =11

Sampling Rate ‘fs’ = 1000 samples /sec

Cutoff frequency = 0.5*pi

2. Compute the cutoff frequency ‘[image: image443.png]

’

[image: image445.png]wC

= [image: image447.png]2*pixfc
fs

3. Choose the desired frequency response of the filter Hd([image: image449.png]

)

4. Take inverse fourier transform of Hd([image: image451.png]

) to obtain the desired impulse response hd(n). By definition of inverse fourier transform.

Hd(n)= 1/2[image: image453.png]n)_, Hd(w)e’*" dw

5. Choose a window sequence [image: image455.png]w(n)and

determine the product of hd(n) and [image: image457.png]w(n)

 let this product be h(n).

H(n)= hd(n)[image: image459.png]w(n)

6. The transfer function H(z) of the filter is obtained by taking z-transform of h(n)

The main advantage of windowing is that it is reasonably straight forward to obtain the filter impulse response with minimal computational effort. The major reasons for the relative success of windows is their simplicity ahnd ease of use and the fact that closed from expfressions are often available for the window coefficients. The main advantage of this technique is that the resulting FIR filters satisfy no known optimality criterion (such as specified attenualtion at [image: image461.png]

) hence their performance3 have to be considerably improved in most cases.

triangular window or barlet

rectangular
hamming

Kaiser
hanning

PROGRAM:

%FIR High pass filter using rectangular and triangular window
clc
close all
clear all
wc=0.5*pi
N=11
alpha=(N-1)/2
eps=0.001
n=0:1:N-1
hd=(sin(pi*(n-alpha+eps))-sin(wc*(n-alpha+eps)))./(pi*(n-alpha+eps))
wr=boxcar(N)
hn=hd.*wr'
w=0:.1:pi
h=freqz(hn,1,w)
plot(w/pi,abs(h),'r')
disp(hn)
hold on
wt=bartlett(N)

hn=hd.*wt'

w=0:.1:pi
h=freqz(hn,1,w)
plot(w/pi,abs(h))
disp(hn)
xlabel('normalised frequency')
ylabel('magnitude')
title('HIGH pass filter using rectangular and triangular window')
legend('rectangular window','triangular window')
%FIR High pass filter using hamming and hanning window
wc=0.5*pi
N=11
alpha=(N-1)/2
eps=0.001
n=0:1:N-1
hd=(sin(pi*(n-alpha+eps))-sin(wc*(n-alpha+eps)))./(pi*(n-alpha+eps))
wh=hamming(N)
hn=hd.*wh'
w=0:.1:pi
h=freqz(hn,1,w)
figure(2)
plot(w/pi,abs(h),'r')
disp(hn)
hold on
wha=hanning(N)
hn=hd.*wha'
w=0:.1:pi
h=freqz(hn,1,w)
plot(w/pi,abs(h))
disp(hn)
xlabel('normalised frequency')
ylabel('magnitude')
title('HIGH pass filter using hamming and hanning window')
legend('hamming window','hanning window')
OUT PUT:
[image: image462.emf]0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

normalised frequency

magnitude

HIGH pass filter using rectangular and triangular window

rectangular window

triangular window

[image: image463.emf]0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

normalised frequency

magnitude

HIGH pass filter using hamming and hanning window

hamming window

hanning window

RESULT:

Verified FIR high pass filter using mat lab Software.

VIVA VOCE:

1. What are the properties of FIR filter?
2. What are the desirable characteristics of the window?

EXPERIMENTS USING TMS 320C6713 DSP PRCOSSESOR

EXPERIMENT-I

ARCHITECTURE OF TMS3206713 DSP PROCESSOR

AIM:

To study the architecture of DSP processor TMS320C6713.

APPARATUS:

DSP processor TMS320C6713

ARCHITECTURE:

The TMS320C6713 is a 32-bit floating point processor can handle 1800MIPS/1350 MFLOPS. The following figure shows the block diagram for the TMS320C6713 Digital Signal Processor. The c6713 devices come with program memory, which, on some devices, can be used as a program cache. The devices also have varying sizes of data memory. Peripherals such as a direct memory access (DMA) controller, power down logic and external memory interface (EMIF) usually come with the CPU, while peripherals such as serial ports and host ports are on only certain devices.

Central Processing Unit (CPU):

The CPU contains:

· program fetch unit

· Instruction dispatch unit, advanced instruction packing(C64 only)

· Instruction decode unit

· Two data paths, each with four functional units

· 32 32-bit registers

· Control registers

· Control logic

· Test, emulation, and interrupt logic

The program fetch, instruction dispatch, and instruction decode units can deliver up to eight 32-bit instructions to the functional units every CPU clock cycle. The processing of instructions occurs in each of the two data paths (A and B), each of which contains four functional units (.L,.S,.M,.D) and 16 32-bit general purpose registers for the C6713. A control register file provides the means to configure and control various processor operations
Internal memory:

The 6713 have a 32-bit, byte addressable address space. Internal (on chip) memory is organized in separate data and program spaces. When off-chip memory is used, these spaces are unified on most devices to a single memory space via the external memory interface(EMIF). The C6713 have two 32-bit internal ports to access internal data memory. The C6713 has a single internal port to access internal program memory, with an instruction-fetch width of 256 bits
Memory and Peripheral Options:

A variety of memory and peripheral options are available for the C6713 DSP:

· Large on-chip RAM, up to 7Mbits.

· Program cache

· 2-level caches

- 32-bit external memory interface supports SDRAM, SBSRAM, SRAM and other asynchronous memory for a broad range of external memory

requirements and maximum system performance.DMA controller transfers data between address ranges in the memory map without intervention by the CPU.

 - The DMA controller has four programmable channels and a fifth auxiliary channel.

- EDMA controller performs the same functions as the DMA controller.

 - The EDMA has 16 programmable channels, as well as a RAM space to hold multiple configurations for future transfers.

· HPI is a parallel port through which a host processors can directly access the CPU’s memory space. The host device has ease of access because it is the master of the interface. The host and the CPU can exchange information via internal or external memory. In addition, the host has direct access to memory map peripherals.

Expansion bus is a replacement for the HPI, as well as an expansion of the EMIF. The expansion provides two distinct areas of functionality (host port and I/O port) which can co-exist in a system. The host port of the expansion bus can operate in either asynchronous slave mode, similar to the HPI, or in synchronous master scale mode.
This allows the device to interface to a variety of host bus protocols. Synchronous FIFOs and asynchronous peripheral I/O devices may interface to the expansion bus.
· McBSP (multi channel buffered serial port) is based on the standard serial port interface found on the TMS320C2000 and C5000 platform devices. In addition, the port can buffered serial samples in memory automatically with the aid of the DMA/EDMA controller. It also has multichannel capability compatible with the T1, E1, SCSA, and MVIP networking standards.

· Timers in the C6713 devices are two 32-bit general purpose

Timers used for this functions:

· Time events

· Count events

· Generate pulses

· Interrupt the CPU

· Send synchronization events to the DMA/EDMA controller.

· Power-down logic allows reduced clocking to reduce power nsumption. Most of the operating power of CMOS logic dissipates during circuit switching from one logic state to another. By preventing some or all of the chips logic from switching, you can realize significant power savings without losing any data or operational context.

Features of Highest-Performance Floating-Point Digital Signal Processor Tms320c6713
· Highest-Performance Floating-Point Digital Signal Processor (DSP):

· Eight 32-Bit Instructions/Cycle

· 32/64-Bit Data Word

· 300-, 225-, 200-MHz (GDP), and 225-, 200-, 167-MHz (PYP) Clock Rates

· 3.3-, 4.4-, 5-, 6-Instruction Cycle Times

· 2400/1800, 1800/1350, 1600/1200, and 1336/1000 MIPS /MFLOPS

· Rich Peripheral Set, Optimized for Audio

· Highly Optimized C/C++ Compiler

· Extended Temperature Devices Available

· Advanced Very Long Instruction Word (VLIW) TMS320C67x™ DSP Core

· Eight Independent Functional Units:

· Two ALUs (Fixed-Point)

· Four ALUs (Floating- and Fixed-Point)

· Two Multipliers (Floating- and Fixed-Point)

· Load-Store Architecture With 32 32-Bit General-Purpose Registers

· Instruction Packing Reduces Code Size

· All Instructions Conditional

· Instruction Set Features

· Native Instructions for IEEE 754

· Single- and Double-Precision

· Byte-Addressable (8-, 16-, 32-Bit Data)

· 8-Bit Overflow Protection

· Saturation; Bit-Field Extract, Set, Clear; Bit-Counting; Normalization

· L1/L2 Memory Architecture

· 4K-Byte L1P Program Cache (Direct-Mapped)

· 4K-Byte L1D Data Cache (2-Way)

· 256K-Byte L2 Memory Total: 64K-Byte L2 Unified Cache/Mapped RAM, and 192K-Byte Additional L2 Mapped RAM

· Device Configuration

· Boot Mode: HPI, 8-, 16-, 32-Bit ROM Boot

Endianness:LittleEndian,BigEndian
· 32-Bit External Memory Interface (EMIF)

· Glueless Interface to SRAM, EPROM, Flash, SBSRAM, and SDRAM

· 512M-Byte Total Addressable External Memory Space

· Enhanced Direct-Memory-Access (EDMA) Controller (16 Independent Channels)

· 16-Bit Host-Port Interface (HPI)

· Two Multichannel Audio Serial Ports (McASPs)

· Two Independent Clock Zones Each (1 TX and 1 RX)

· Eight Serial Data Pins Per Port:
 Individually Assignable to any of the Clock Zones

· Each Clock Zone Includes:

· Programmable Clock Generator

· Programmable Frame Sync Generator

· TDM Streams From 2-32 Time Slots

· Support for Slot Size:
 8, 12, 16, 20, 24, 28, 32 Bits

· Data Formatter for Bit Manipulation

· Wide Variety of I2S and Similar Bit Stream Formats

· Integrated Digital Audio Interface Transmitter (DIT) Supports:

· S/PDIF, IEC60958-1, AES-3, CP-430 Formats

· Up to 16 transmit pins

· Enhanced Channel Status/User Data

· Extensive Error Checking and Recovery

· Two Inter-Integrated Circuit Bus (I2C Bus™) Multi-Master and Slave Interfaces

· Two Multichannel Buffered Serial Ports:

· Serial-Peripheral-Interface (SPI)

· High-Speed TDM Interface

AC97 Interface
· Two 32-Bit General-Purpose Timers

· Dedicated GPIO Module With 16 pins (External Interrupt Capable)

· Flexible Phase-Locked-Loop (PLL) Based Clock Generator Module

· IEEE-1149.1 (JTAG[image: image464.png]

) Boundary-Scan-Compatible

· Package Options:

· 208-Pin PowerPAD™ Plastic (Low-Profile) Quad Flatpack (PYP)

· 272-BGA Packages (GDP and ZDP)

0.13-µm/6-LevelCopper
MetalProcess
· CMOS Technology

· 3.3-V I/Os, 1.2[image: image465.png]

-V Internal (GDP & PYP)

· 3.3-V I/Os, 1.4-V Internal (GDP)(300 MHz only)

TMS320C6713 ARCHITECTURE

[image: image466.png]£
=
£
g
w
- o
g
Voltage
Reg
Embedded -
P heral E
e EREES
¥ @ [Lto] [oF]
E g 0123 0123

Memory Exp

TMS320C6713 DSK Overview Block Diagram

RESULT:Thus the architecture of TMS320C6713 processor is studied

EXPERIMENT – 2

CODE COMPOSER STUDIO
INTRODUCTION TO CODE COMPOSER STUDIO

Code Composer is the DSP industry's first fully integrated development environment (IDE) with DSP-specific functionality. With a familiar environment liked MS-based C++TM, Code Composer lets you edit, build, debug, profile and manage projects from a single unified environment. Other unique features include graphical signal analysis, injection/extraction of data signals via file I/O, multi-processor debugging, automated testing and customization via a C-interpretive scripting language and much more.

CODE COMPOSER FEATURES INCLUDE:
· IDE

· Debug IDE

· Advanced watch windows

· Integrated editor

· File I/O, Probe Points, and graphical algorithm scope probes

· Advanced graphical signal analysis

· Interactive profiling

· Automated testing and customization via scripting

· Visual project management system

· Compile in the background while editing and debugging

· Multi-processor debugging

· Help on the target DSP

· To create a system configuration using a standard configuration file:

· Step 1: Start CCS Setup by double clicking on the Setup CCS desktop icon.

· Step 2: select Family

(c67xx

·
 Platform

(simulator

·
Endianness

(little
Step 3: Click the Import button (File (import) to import our selection (c67xx_sim.ccs) to the system configuration currently being created in the CCS Setup window.

Step 4: Click the Save and Quit button to save the configuration in the System Registry.

Step 5: Click the Yes button to start the CCS IDE when we exit CCS Setup. The CCS Setup closes and the CCS IDE automatically opens using the configuration we just created.

[image: image467.png]Code Composer Studio Setup
Fie Edt View Help

E—— pe— Forty st ek
T
301 Do st o o
= e Core U o e Sk [RBCert b ey e i oo i e
- sz [kt tnptog it ey s
[iteotiptng ity oy s
o oy o et Srmirr G e e

| 5 | B Factory Boards [EB Custom Boards | M Create Board
Goeraa] | =] \

Select the system nads to add a new board t the system configuratian.

PROCEDURE TO WORK ON CODE COMPOSER STUDIO

Step 1: Creating a New Project
 From the Project menu, choose New.

In the Project Name field, type the name we want for our project. Each project we create must have a unique name, and Click Finish. The CCS IDE creates a project file called projectname.pjt. This file stores our project settings and references the various files used by our project.

The Project Creation wizard window displays
[image: image468.png]Project Creation

Project Name: ||
P =

Project Type: [Evecutable (ou) =]

Tagt [smoene <]
| =

[image: image469.png]savein |2 convolution -] « @ ef

=) linear_conv.c

Fierame: [ivacovolon S

Save as ype: [C/Te+ Source fes (e - Cancel

Help

ddl

Step 2: Creating a source file

Create a new source file using ‘File (new (source file ‘ pull down menu and
save the source file with .c extension in the current project name directory.

Save as type: c/c++ source file (*.c*)

Path: C:\CCStudio_v3.1\ MyProjects\Project Name\

Step 3: Add files to our project (source file\ library file\ linker file)

Source file: Add the source file in the project using ‘Project(add files to project’ pull down menu
Files of type: c/c++ source file (*.c*)

Path: C:\CCStudio_v3.1\ MyProjects\Project Name\file_name.c

Library file: Add the library file in the project using ‘Project(add files to project’ pull down menu.

Files of type: Object and Library Files (*.o*,*.l*)

Path: C:\CCStudio_v3.1\ C6000\ cgtools\ lib \ rts6700.lib

Linker file: Add the linker file in the project using ‘Project(add files to project’ pull down menu.

Files of type: Linker command Files (*.cmd*,*.lcf*)

Path: C:\CCStudio_v3.1\ tutorial\ dsk6711\ hello1 \ hello.cmd

Step 4: Building and Running the Program (compile\ Build\ Load Program\ Run)

Compile: Compile the program using the ‘Project-compile’ pull down menu or by clicking the shortcut icon on the left side of program window.

Build: Build the program using the ‘Project-Build’ pull down menu or by clicking the shortcut icon on the left side of program window.

Load Program: Load the program in program memory of DSP chip using the ‘File-load program’ pull down menu.

Files of type:(*.out*)

Path: C:\CCStudio_v3.1\ MyProjects\Project Name\ Debug\ Project Name.out

Run: Run the program using the ‘Debug-Run’ pull down menu or by clicking the shortcut icon on the left side of program window.

Step 5: observe output using graph

 Choose View GraphTime/Frequency.

 In the Graph Property Dialog, change the Graph Title, Start Address, Acquisition

Buffer Size, Display Data Size, DSP Data Type, Auto scale, and Maximum Y- Value properties to the values.

EXPERIMENT-3

GENERATION OF SINUSOIDAL SIGNAL BASED ON DIFFERENCE EQUATION

AIM:

To develop a c-language code for the generation of sinusoidal signal based on difference equation and verify it using DSP Processor.

APPARATUS:

TMS 320C6713 Kit.

Oscilloscope & Function Generator

RS232 Serial Cable

Power Cord

Operating System: Windows XP

Software: CCStudio_v3.1

THEORY:

The several form of difference equation of an with[image: image471.png]NER

 order linear time invariant discrete time (LTI- DT) system is

 Y(n) = [image: image473.png]

y(n-k) + [image: image475.png]

X(n-k)

Where [image: image477.png]

 and [image: image479.png]

 are constants.

The response of any discrete time system can be decomposed as

 Total response = zero state response + zero input response

The zero state response of the system is the response of the system due to input alon when the initial state of the system is zero/. That is, the system is intitially relazed at time n=0 . The zero input response depends only on the initial state of the system, that is the input is zero.

 For ex, let us consider the first order DT system with difference equation

y(n) = ay(n-1)+ x(n)

x(n) and y(n) = input and output respectively,

Let the input sequence x(n) is zero for n[image: image481.png]< 0 and the intital condition y(n— 1) # 0

.

The values of y(n) for n[image: image482.png]

0 are as follows

For n=0

y(0) = ay(-1)+ x(0)

y(1) = ay(0)+ x(1)
y(1) = [image: image484.png]

 y(-1)+ax(0)+x(1)

y(2) = ay(1)+ y(2)= a[image: image486.png][a® y(—1) + ax(0) + x(1)]

+x(2)

y(2) = [image: image488.png]

 y(-1)+[image: image490.png]

x(0)+ax(1)+x(2)

For any ‘n’

 y(n) = [image: image492.png]a"ly(—1)+ X, x(n—k)forn=0

The response of y(n) includes two parts

1. The first parts depends on the initial condition of the system

2. The second term depends on input.

When y(-1) = 0 the output y(n) depends only on the input applied hence y(n) is known as the zero state response or forced response of the system given by

 Y f(n) = [image: image494.png]r_,afx(n—k)fornz=0

If the system is initially non relaxed that is y(-1) [image: image496.png]=0

, and the input x(n) = 0 for all ‘n’ the output of the system y(n) depends only on the initial state of the system. Then the response of the system is called zero input response or natural response is given by [image: image498.png]v,(n) = a" 1y(-1)

 n[image: image500.png]

.

 The total response [image: image502.png]v(n) = y;(n) + y,(n)

PROCEDURE:

· Open Code Composer Studio, make sure the DSP kit is turned on.

· Start a new project using ‘Project-new ‘ pull down menu, save it in a

separate directory(c:\ti\myprojects) with name lconv.pjt.

· Add the source files conv.asm.

· to the project using ‘Project(add files to project’ pull down menu.

· Add the linker command file hello.cmd.

(Path: c:\ti\tutorial\dsk6713\hello1\hello.cmd)

· Add the run time support library file rts6700.lib.

(Path: c:\ti\c6000\cgtools\lib\rts6700.lib)

· Compile the program using the ‘Project-compile’ pull down menu or by

clicking the shortcut icon on the left side of program window.

· Build the program using the ‘Project-Build’ pull down menu or by

clicking the shortcut icon on the left side of program window.

· Load the program (lconv.out) in program memory of DSP chip using the

‘File-load program’ pull down menu.

· To View output graphically

Select view (graph (time and frequency.

PROGRAM:

//Generation of sinusoidal waveform based on DE

#include <stdio.h>

#include <math.h>

#define freq 400

float y[3]={0,0,0};

float x[3]={0,0,0};

float z[128],n[128],m[128],p[128];

main()

{

int i=0,j;

float a[3]={0.072231,0.144462,0.072231};

float b[3]={1.000000,-1.109229,0.398152};

for(i=0;i<128;i++)

{

m[i]=sin(2*3.14*freq*i/24000);

}

for(j=0;j<128;j++)

{

x[0]=m[j];

y[0]=(a[0]*x[0])+(a[1]*x[1])+(a[2]*x[2])- (y[1]*b[1])-(y[2]*b[2]);

z[j]=y[0];

y[2]=y[1];

y[1]=y[0];

x[2]=x[1];

x[1]=x[0];

}

}

OUTPUT:

[image: image503.png]Graph Tile
Start Ackess
Acquisiion Bulfe Size:
Indes Increment
Display Data Size
DSP Data Type
Sampling Rate (Hz)
Plot Data From
Leftshited Data Display
Autoscale

DCVakie

v Display

Time Display Urit

Status Bar Display
Magnitude Display Scale

| Complete,

Single Time
Graphical Display
128

1

128

324t floating point
1

Leftio Right

Yes

on

0

on

on

(63, -0.70117) n_ [Auto Scale

o |t

[GEL StartUp Complete.

rrors, 1 Warnings, 0 Remarks.

1t size.

GEL StartUp Complete.
GEL StartUp Complete.

[T\ Buita essages

ALTED: sjw breakpoint

latt of |lom =

Lné, Col 16

[image: image504.png]1C6713 DSKICPU_1 - C671x - Code Composer Studio - [Graphical Display]

@ Fie Edt View Project Debug GEL Opton Profie Tods DSpiploS Window Hep

BEH| 2R | \R"ﬁ"ﬁ"nl‘

ca[EE|

[Em ~I[oea HeaEss o82% | 8L \
& Graph Property Dialog
7 | [Single Tine
Grph Tie Grptical Displey
T | J ot acess .
(3 | [acaisiion Butter Sze 12
| [indsincronent 1
o Display Data Size. 128
0| || osPData Type 32-bitloating point
— || Sampling Rate (Hz) 1
| [Petoataron LetioRignt
LitshtedData sy Ves
& | Jaitseae on
2| [locvaie 0
" | Joves it o
2| | e icpyurit .
2| | status Bar Displey an
7| Y Magniude iy oo~ Lnes
= T (63, -0.20042)

in utocale |

=STack oprion

Build Complete.
0 Errors, 1 Warnings, 0 Remarks.

AT\ Buita Wessages 7

[GEL StartUp Complete.
GEL StartUp Complete.
GEL StartUp Complete.

@m 3

. HALTED: sfw breakont:

ln, Col 16 |

RESULT: Verified generation of sinusoidal signal based on difference equation using DSP processor 6713
EXPERIMENT - 4

LINEAR CONVALUTION

AIM:

To develop a c-language code for the linear convalution and verify it using DSP Processor
APPARATUS:
TMS 320C6713 Kit.

RS232 Serial Cable

Power Cord

Operating System – Windows XP

Software – CCStudio_v3.1

THEORY:

Convolution is a formal mathematical operation, just as multiplication, addition, and integration. Addition takes two numbers and produces a third number, while convolution takes two signals and produces a third signal. Convolution is used in the mathematics of many fields, such as probability and statistics. In linear systems, convolution is used to describe the relationship between three signals of interest: the input signal, the impulse response, and the output signal.

[image: image505.png]Wil=

In this equation, x(k), h(n-k) and y(n) represent the input to and output from the system at time n. Here we could see that one of the inputs is shifted in time by a value every time it is multiplied with the other input signal. Linear Convolution is quite often used as a method of implementing filters of various types.

PROGRAM:

#include<stdio.h>

#include<math.h>

int y[20];

void main()

{

int m=4;

int n=4;

int i=0,j;

int x[10]={1,2,3,4,0,0,0};

int h[10]={4,3,2,1,0,0,0};

for(i=0;i<m+n-1;i++)

{

y[i]=0;

for(j=0;j<=i;j++)

y[i]+=x[j]*h[i-j];

}

for(i=0;i<m+n-1;i++)

printf("%d\n",y[i]);

}

PROCEDURE:

· Open Code Composer Studio, make sure the DSP kit is turned on.

· Start a new project using ‘Project-new ‘ pull down menu, save it in a

separate directory(c:\ti\myprojects) with name lconv.pjt.

· Add the source files conv.asm.

· to the project using ‘Project(add files to project’ pull down menu.

· Add the linker command file hello.cmd.

(Path: c:\ti\tutorial\dsk6713\hello1\hello.cmd)

· Add the run time support library file rts6700.lib.

(Path: c:\ti\c6000\cgtools\lib\rts6700.lib)

· Compile the program using the ‘Project-compile’ pull down menu or by

clicking the shortcut icon on the left side of program window.

· Build the program using the ‘Project-Build’ pull down menu or by

clicking the shortcut icon on the left side of program window.

· Load the program (lconv.out) in program memory of DSP chip using the

‘File-load program’ pull down menu.

· To View output graphically

Select view (graph (time and frequency.

OUTPUT:

[image: image506.png]= Graph Property Dialog

Single Time
Graph Tile Graphical Display

Start Ackess v

Acquisiion Bulfe Size: 2

Indes Increment 1

Display Data Size 2

DSP Data Type 16bit signed nteger

Qvalue 0

Sampling Rate (Hz) 1

Plot Data From Leftto Right

Leftshited Data Display Yes

Autoscale ot

DCVakie 0

Masinum Y-value ®

ves Display on

Time Display Urit s a

Un [Fixed scale

Cancel | Help 5

the circular convelution is
4 16 14 6 411 20 30 20 114 =

¥ [P\, Build /, Messages), Stdout 4| « o

HALTED: sfuw breakpoint in, Col 1

RESULT: Verified linear convalution using DSP 6713 processor

EXPERIMENT- 5

CIRCULAR CONVALUTION
AIM:

 To develop a c-language code for the circular convalution and verify it using DSP Processor
EQUIPMENTS:

TMS 320C6713 Kit.

RS232 Serial Cable

Power Cord

Operating System – Windows XP

Software – CCStudio_v3.1

THEORY:

Circular convolution is another way of finding the convolution sum of two input signals. It resembles the linear convolution, except that the sample values of one of the input signals is folded and right shifted before the convolution sum is found. Also note that circular convolution could also be found by taking the DFT of the two input signals and finding the product of the two frequency domain signals. The Inverse DFT of the product would give the output of the signal in the time domain which is the circular convolution output. The two input signals could have been of varying sample lengths. But we take the DFT of higher point, which ever signals levels to.. This process is called circular convolution.

PROGRAM

/*circularconvalution*/

/*program to implement circular convolution */

#include<stdio.h>

 int m,n,x[30],h[30],y[30],i,j, k,x2[30],a[30];

void main()

{

 printf(" enter the length of the first sequence\n");

 scanf("%d",&m);

 printf(" enter the length of the second sequence\n");

 scanf("%d",&n);

 printf(" enter the first sequence\n");

 for(i=0;i<m;i++)

 scanf("%d",&x[i]);

 printf(" enter the second sequence\n");

 for(j=0;j<n;j++)

 scanf("%d",&h[j]);

 if(m-n!=0)

/*If length of both sequences are not equal*/

 {

 if(m>n)

/* Pad the smaller sequence with zero*/

 {

 for(i=n;i<m;i++)

 h[i]=0;

 n=m;

 }

 for(i=m;i<n;i++)

 x[i]=0;

 m=n;

 }

 y[0]=0;

 a[0]=h[0];

 for(j=1;j<n;j++)

/*folding h(n) to h(-n)*/

 a[j]=h[n-j];

 /*Circular convolution*/

 for(i=0;i<n;i++)

 y[0]+=x[i]*a[i];

 for(k=1;k<n;k++)

 {

 y[k]=0;

 /*circular shift*/

 for(j=1;j<n;j++)

 x2[j]=a[j-1];

 x2[0]=a[n-1];

 for(i=0;i<n;i++)

 {

 a[i]=x2[i];

 y[k]+=x[i]*x2[i];

 }

 }

 /*displaying the result*/

 printf(" the circular convolution is\n");

 for(i=0;i<n;i++)

 printf("%d \t",y[i]);

 }

PROCEDURE:

· Open Code Composer Studio; make sure the DSP kit is turned on.

· Start a new project using ‘Project-new ‘ pull down menu, save it in a

separate directory(c:\ti\myprojects) with name cir conv.pjt.

· Add the source files Circular Convolution.C.
· to the project using ‘Project(add files to project’ pull down menu.

· Add the linker command file hello.cmd .

(Path: c:\ti\tutorial\dsk6713\hello1\hello.cmd)

· Add the run time support library file rts6700.lib
(Path: c:\ti\c6000\cgtools\lib\rts6700.lib)

· Compile the program using the ‘Project-compile’ pull down menu or by

clicking the shortcut icon on the left side of program window.

· Build the program using the ‘Project-Build’ pull down menu or by

clicking the shortcut icon on the left side of program window.

· Load the program(lconv.out) in program memory of DSP chip using the

‘File-load program’ pull down menu.

OUT PUT:

[image: image507.png]74C6713 DSKICPU_1 - C671x - Code Composer Studio - [Graphical Display]

@ Fie Edt View Project Debug GEL Opton Profie Tods DSpiploS Window Hep

a mssr%ammu—mﬁ»muﬂ. TAl==0
[indui ~I[0ebug MleEs o w(>x | &L
& Graph Property Dialog,
Display Type. Single Time: a0
Graph Tite Graphicl Disly
Start Address v 10
cauiston Bufer Sz 10 100
Index Increment 1
Diply Data ize 10 so0
DSF Data Type 166 signed iteger
Qe 0 o
Sampling Rate (Hz) 1
PlotDats Fom LettoFight 50
Letshited Data Disly Vs
Autoscale Off -100;
DCVake 0
Masimum Y-value 20 150
s Dispoy on 200
Tine Dislay Unk . N TTTE s R i s TR e
B [R5 Time [lin” [Fixed Scale |
Concel | Help
GEL StartUp Complete.
1 GEL StartUp Complete.
2 GEL StartUp Complete.
1 GEL StartUp Complete.
the circular convelution is GEL StartUp Complete.
14 16 14 16 -1 ||EL StartUp Complete.
AT DT Build A Messages A Stdout IR 13 3} >
) HALTED: sfuw breakpoint n2, Col 1

fitorg

RESULT: Verified circular convalution using DSP 6713 processor.

EXPERIMENT-6

N-POINT FAST FOURIER TRANSFORM (FFT)
AIM:
To develop a c-language code for the N point FFT and verify it using DSP Processor.
APPARATUS:

TMS 320C6713 Kit.

Oscilloscope & Function Generator

RS232 Serial Cable

Power Cord

Operating System – Windows XP

Software – CCStudio_v3.1

THEORY:

The Fast Fourier Transform is useful to map the time-domain sequence into a continuous function of a frequency variable. The FFT of a sequence {x(n)} of length N is given by a

Complex-valued sequence X (k).

[image: image508.wmf]1

0

;

)

(

)

(

0

2

-

<

<

=

å

=

-

N

k

e

n

x

k

X

M

k

n

nk

j

p

The above equation is the mathematical representation of the DFT. As the number of computations involved in transforming a N point time domain signal into its corresponding frequency domain signal was found to be N2 complex multiplications, an alternative algorithm involving lesser number of computations is opted. When the sequence x(n) is divided into 2 sequences and the DFT performed separately, the resulting number of computations would be N2/2. (i.e.)

[image: image509.wmf]k

n

N

N

n

N

n

nk

N

W

n

x

W

n

x

k

x

)

1

2

(

1

2

0

1

2

0

2

)

1

2

(

)

2

(

)

(

2

2

+

-

=

-

=

+

+

=

å

å

Consider x(2n) be the even sample sequences and x(2n+1) be the odd sample sequence derived form x(n).

[image: image510.wmf]å

-

=

1

2

0

2

2

)

2

(

N

n

nk

N

W

n

x

(N/2)2multiplication’s
[image: image511.wmf]å

-

=

+

+

1

2

0

)

1

2

(

2

)

1

2

(

N

n

k

n

N

W

n

x

an other (N/2)2 multiplication's finally resulting in (N/2)2 + (N/2)2

=
[image: image512.wmf]ns

Computatio

N

N

N

2

4

4

2

2

2

=

+

Further solving Eg. (2)

[image: image513.wmf]k

N

nk

N

N

n

N

n

nk

N

W

W

n

x

W

n

x

k

x

)

2

(

1

2

0

1

2

0

2

)

1

2

(

)

2

(

)

(

2

+

+

=

å

å

-

=

-

=

[image: image514.wmf])

2

(

1

2

0

1

2

0

2

)

1

2

(

)

2

(

nk

N

N

n

N

n

k

N

nk

N

W

n

x

W

W

n

x

+

+

=

å

å

-

=

-

=

Dividing the sequence x(2n) into further 2 odd and even sequences would reduce the computations.

WN (is the twiddle factor

[image: image515.wmf]n

j

e

p

2

-

=

[image: image516.wmf]nk

n

j

nk

N

e

W

÷

ø

ö

ç

è

æ

-

=

p

2

[image: image517.wmf]÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

+

=

2

2

N

K

N

N

N

K

N

W

W

W

[image: image518.wmf]2

2

2

n

n

j

k

n

j

e

e

p

p

-

-

=

[image: image519.wmf]k

n

j

k

N

e

W

p

2

-

=

[image: image520.wmf])

sin

(cos

p

p

j

W

k

N

-

=

[image: image521.wmf])

1

(

2

-

=

=

÷

ø

ö

ç

è

æ

+

k

N

N

K

N

W

W

[image: image522.wmf]k

N

N

K

N

W

W

=

=

÷

ø

ö

ç

è

æ

+

2

 Employing this equation, we deduce

[image: image523.wmf])

2

(

1

2

0

1

2

0

2

)

1

2

(

)

2

(

)

(

2

nk

N

N

n

N

n

nk

N

W

n

x

W

n

x

k

x

+

+

=

å

å

-

=

-

=

(13)

[image: image524.wmf])

2

(

1

2

1

2

0

2

)

1

2

(

)

2

(

)

2

(

nk

N

N

N

n

K

N

nk

N

W

n

x

W

W

n

x

N

k

x

-

-

=

+

-

=

+

å

å

The time burden created by this large number of computations limits the usefulness of DFT in many applications. Tremendous efforts devoted to develop more efficient ways of computing DFT resulted in the above explained Fast Fourier Transform algorithm. This mathematical shortcut reduces the number of calculations the DFT requires drastically. The above mentioned radix-2 decimation in time FFT is employed for domain transformation.

Dividing the DFT into smaller DFTs is the basis of the FFT. A radix-2 FFT divides the DFT into two smaller DFTs, each of which is divided into smaller DFTs and so on, resulting in a combination of two-point DFTs. The Decimation -In-Time (DIT) FFT divides the input (time) sequence into two groups, one of even samples and the other of odd samples. N/2 point DFT are performed on the these sub-sequences and their outputs are combined to form the N point DFT.

[image: image525.jpg]N4

= =~

A 4

a+bw!

The above shown mathematical representation forms the basis of N point FFT and is called the Butterfly Structure.

PROGRAM:

//#fft256.c

#include <math.h>

#define PTS 64

 //# of points for FFT

#define PI 3.14159265358979

typedef struct {float real,imag;} COMPLEX;

void FFT(COMPLEX *Y, int n);
 //FFT prototype

float iobuffer[PTS];

 //as input and output buffer

float x1[PTS];

 //intermediate buffer

short i;

 //general purpose index variable

short buffercount = 0;
 //number of new samples in iobuffer

short flag = 0;

 //set to 1 by ISR when iobuffer full

COMPLEX w[PTS];

 //twiddle constants stored in w

COMPLEX samples[PTS];

 //primary working buffer

main()

{

 for (i = 0 ; i<PTS ; i++)
 // set up twiddle constants in w

 {

 w[i].real = cos(2*PI*i/(PTS*2.0)); //Re component of twiddle constants

 w[i].imag =-sin(2*PI*i/(PTS*2.0)); //Im component of twiddle constants

 }

 for (i = 0 ; i < PTS ; i++) //swap buffers

 {

 iobuffer[i] = sin(2*PI*10*i/64.0);/*10- > freq,

64 -> sampling freq*/

 samples[i].real=0.0;

 samples[i].imag=0.0;

 }

 for (i = 0 ; i < PTS ; i++) //swap buffers

 {

 samples[i].real=iobuffer[i]; //buffer with new data

 }

 for (i = 0 ; i < PTS ; i++)

 samples[i].imag = 0.0;
 //imag components = 0

FFT(samples,PTS); //call function FFT.c

 for (i = 0 ; i < PTS ; i++) //compute magnitude

 {

 x1[i] = sqrt(samples[i].real*samples[i].real

 + samples[i].imag*samples[i].imag);

 }

}
 //end of main

//#fft.c:

#define PTS 64

 //# of points for FFT

//#typedef struct {float real,imag;} COMPLEX;

extern COMPLEX w[PTS];
 //twiddle constants stored in w

void FFT(COMPLEX *Y, int N) //input sample array, # of points

{

 COMPLEX temp1,temp2; //temporary storage variables

 int i,j,k; //loop counter variables

 int upper_leg, lower_leg;
//index of upper/lower butterfly leg

 int leg_diff; //difference between upper/lower leg

 int num_stages = 0; //number of FFT stages (iterations)

 int index, step; //index/step through twiddle constant

 i = 1; //log(base2) of N points= # of stages

 do

 {

 num_stages +=1;

 i = i*2;

 }while (i!=N);

 leg_diff = N/2;

 //difference between upper&lower legs

 step = (PTS*2)/N;
//step between values in twiddle.h

 for (i = 0;i < num_stages; i++) //for N-point FFT

 {

 index = 0;

 for (j = 0; j < leg_diff; j++)

 {

 for (upper_leg = j; upper_leg < N; upper_leg += (2*leg_diff))

 {

 lower_leg = upper_leg+leg_diff;

 temp1.real = (Y[upper_leg]).real + (Y[lower_leg]).real;

 temp1.imag = (Y[upper_leg]).imag + (Y[lower_leg]).imag;

 temp2.real = (Y[upper_leg]).real - (Y[lower_leg]).real;

 temp2.imag = (Y[upper_leg]).imag - (Y[lower_leg]).imag;

 (Y[lower_leg]).real = temp2.real*(w[index]).real

 -temp2.imag*(w[index]).imag;

 (Y[lower_leg]).imag = temp2.real*(w[index]).imag

 +temp2.imag*(w[index]).real;

 (Y[upper_leg]).real = temp1.real;

 (Y[upper_leg]).imag = temp1.imag;

 }

 index += step;

 }

 leg_diff = leg_diff/2;
step *= 2;

 }

 j = 0;

 for (i = 1; i < (N-1); i++) //bit reversal for resequencing data

 {

 k = N/2;

 while (k <= j)

 {

 j = j - k;

 k = k/2;

 }

 j = j + k;

 if (i<j)

 {

 temp1.real = (Y[j]).real;

 temp1.imag = (Y[j]).imag;

 (Y[j]).real = (Y[i]).real;

 (Y[j]).imag = (Y[i]).imag;

 (Y[i]).real = temp1.real;

 (Y[i]).imag = temp1.imag;

 }

 }

 return;

}

PROCEDURE:

· Open Code Composer Studio, make sure the DSP kit is turned on.

· Start a new project using ‘Project-new ‘ pull down menu, save it in a

separate directory(c:\ti\myprojects) with name “FFT.pjt”.

· Add the source files “fft256.c“ and “fft.C” in the project using

 ‘Project(add files to project’ pull down menu.

· Add the linker command file “hello.cmd”.

· Add the rts file “rts6700.lib” .

· Compile the program using the ‘Project-compile’ pull down menu or by

clicking the shortcut icon on the left side of program window.

· Load the program in program memory of DSP chip using the ‘File-load program’ pull down menu.

Run the program and observe output using graph utility
OUT PUT:

[image: image526.png]& Graph Property Dialog

Display Type Single Time -
fitinput 0
Start Addiess iobuifer

Acguistion Buffer Size 6

Indes Increment 1

Display Data Sice: 6

DSP Data Type 324t flosting point i
Sampling Rate (Hz) 1 F
Flot Deta From Leftto Right

Leftshited Data Displey Yes

Autoscale On

DCValue 0

Aues Display n |
Time Display Urit s

Status Bar Displey 0n

Magritude Display Scale Linear

] coee |t |

(31, -0.83147) n_ [Auto Scale

-stack option to change the default size.

lete,
. 1 Warnings. 0 Remarks.

10 A Messages), stdout]|« 3

wbreakpoint 1n 35, Col .

[image: image527.png]= Graph Property Dialog

Display Type Single Time
FFTOUTPUT|

Start Ackress i

Acquisiion Bulfe Size: 61

Indes Increment 1

Display Data Size 61

DSP Data Type 324t flosting point

Sampling Rate (Hz) 1

Plot Data From Leftto Right

Leftshited Data Display Yes

Autoscale on

DCVakie 0

v Display on

Time Display Urit s

Status Bar Display on

Magnitude Display Scale Linear

(31, 4.571175-14) Tme n_ [Auto Scale

] coee |t |

-stack option to change the default size.

plete,
s, 1 Warnings, D Remarks.

uild £ Wessages), Sdout 1| « >

i breakpont 1n 35, Col

RESULT: Verified N-Point FFT using DSP 6713 Processor
EXPERIMENT- 7

TO COMPUTE THE POWER SPECTRUM OF A GIVEN SEQUENCE

AIM:
To develop a c-language code for the power spectrum of a given sequence and verify it using DSP Processor.

EQUIPMENTS:

TMS 320C6713 Kit.

Oscilloscope & Function Generator

RS232 Serial Cable

Power Cord

Operating System: Windows XP

Software: CCStudio_v3.1

THEORY:

The total or the average power in a signal is often not of as great an interest. We are most often interested in the PSD or the Power Spectrum. We often want to see is how the input power has been redistributed by the channel and in this frequency-based redistribution of power is where most of the interesting information lies. The total area under the Power Spectrum or PSD is equal to the total avg. power of the signal. The PSD is an even function of frequency or in other words.

To compute PSD:

The value of the auto-correlation function at zero-time equals the total power in the signal. To compute PSD we compute the auto-correlation of the signal and then take its FFT. The auto-correlation function and PSD are a Fourier transform pair. (Another estimation method called “period gram” uses sampled FFT to compute the PSD.).

E.g.: For a process x(n) correlation is defined as:

Power Spectral Density is a Fourier transform of the auto correlation.

PROGRAM:

//‘C’ PROGRAM TO IMPLEMENT PSD:

 // PSD.c:

/***

 * FILENAME

 * Non_real_time_PSD.c

 * DESCRIPTION

 * Program to Compute Non real time PSD

 * using the TMS320C6711 DSK.

 * DESCRIPTION

 * Number of points for FFT (PTS)

 * x --> Sine Wave Co-Efficients

 * iobuffer --> Out put of Auto Correlation.

 * x1 --> use in graph window to view PSD

/*===*/

#include <math.h>

#define PTS 128

//# of points for FFT

#define PI 3.14159265358979

typedef struct {float real,imag;} COMPLEX;

void FFT(COMPLEX *Y, int n);

//FFT prototype

float iobuffer[PTS];

//as input and output buffer

float x1[PTS],x[PTS];

//intermediate buffer

short i;

//general purpose index variable

short buffercount = 0;

//number of new samples in iobuffer

short flag = 0;

//set to 1 by ISR when iobuffer full

float y[128];

COMPLEX w[PTS];

//twiddle constants stored in w

COMPLEX samples[PTS];

//primary working buffer

main()

{

 float j,sum=0.0 ;

 int n,k,i,a;

 for (i = 0 ; i<PTS ; i++)
 // set up twiddle constants in w

 {

w[i].real = cos(2*PI*i/(PTS*2.0));

/*Re component of twiddle constants*/

w[i].imag =-sin(2*PI*i/(PTS*2.0));

/*Im component of twiddle constants*/

 }

/****************Input Signal X(n) *************************/

 for(i=0,j=0;i<PTS;i++)

 { x[i] = sin(2*PI*5*i/PTS);

 // Signal x(Fs)=sin(2*pi*f*i/Fs);

 samples[i].real=0.0;

 samples[i].imag=0.0;

 }

/********************Auto Correlation of X(n)=R(t) ***********/

 for(n=0;n<PTS;n++)

 {

sum=0;

for(k=0;k<PTS-n;k++)

{

 sum=sum+(x[k]*x[n+k]);
// Auto Correlation R(t)

}

 iobuffer[n] = sum;

 }

/********************** FFT of R(t) ***********************/

 for (i = 0 ; i < PTS ; i++) //swap buffers

 {

 samples[i].real=iobuffer[i]; //buffer with new data

 }

 for (i = 0 ; i < PTS ; i++)

 samples[i].imag = 0.0;
 //imag components = 0

 FFT(samples,PTS); //call function FFT.c

/******************** PSD ********************/

 for (i = 0 ; i < PTS ; i++) //compute magnitude

 {

 x1[i] = sqrt(samples[i].real*samples[i].real

 + samples[i].imag*samples[i].imag);

}

}

 //end of main

//FFT.c:

#define PTS 128

 //# of points for FFT

//typedef struct {float real,imag;} COMPLEX;

extern COMPLEX w[PTS];
 //twiddle constants stored in w

void FFT(COMPLEX *Y, int N) //input sample array, # of points

{

 COMPLEX temp1,temp2; //temporary storage variables

 int i,j,k; //loop counter variables

 int upper_leg, lower_leg; //indexof upper/lower butterfly leg

 int leg_diff; //difference between upper/lower leg

 int num_stages = 0; //number of FFT stages (iterations)

 int index, step; //index/step through twiddle constant

 i = 1; //log(base2) of N points= # of stages

 do

 {

 num_stages +=1;

 i = i*2;

 }while (i!=N);

 leg_diff = N/2;
 //difference between upper&lower legs

 step = (PTS*2)/N; //step between values in twiddle.h// 512

 for (i = 0;i < num_stages; i++) //for N-point FFT

 {

 index = 0;

 for (j = 0; j < leg_diff; j++)

 {

 for (upper_leg = j; upper_leg < N; upper_leg += (2*leg_diff))

 {

 lower_leg = upper_leg+leg_diff;

 temp1.real = (Y[upper_leg]).real + (Y[lower_leg]).real;

 temp1.imag = (Y[upper_leg]).imag + (Y[lower_leg]).imag;

 temp2.real = (Y[upper_leg]).real - (Y[lower_leg]).real;

 temp2.imag = (Y[upper_leg]).imag - (Y[lower_leg]).imag;

 (Y[lower_leg]).real = temp2.real*(w[index]).real

 -temp2.imag*(w[index]).imag;

 (Y[lower_leg]).imag = temp2.real*(w[index]).imag

 +temp2.imag*(w[index]).real;

 (Y[upper_leg]).real = temp1.real;

 (Y[upper_leg]).imag = temp1.imag;

}

 index += step;

 }

 leg_diff = leg_diff/2;

 step *= 2;

 }

 j = 0;

 for (i = 1; i < (N-1); i++)

//bit reversal for resequencing data

 {

 k = N/2;

 while (k <= j)

 {

j = j - k;

k = k/2;

 }

j = j + k;

if (i<j)

{

 temp1.real = (Y[j]).real;

 temp1.imag = (Y[j]).imag;

 (Y[j]).real = (Y[i]).real;

 (Y[j]).imag = (Y[i]).imag;

 (Y[i]).real = temp1.real;

 (Y[i]).imag = temp1.imag;

}

 }

 return;

}

PROCEDURE:

· Open Code Composer Studio, make sure the DSP kit is turned on.

· Start a new project using ‘Project-new ‘ pull down menu, save it in a

separate directory(c:\ti\myprojects) with name “PSD.pjt”.

· Add the source files “PSD.c“ and “FFT.c” in the project using

 ‘Project(add files to project’ pull down menu.

· Add the linker command file “hello.cmd” .

· Add the rts file “rts6700.lib” .

· Compile the program using the ‘Project-compile’ pull down menu or by

clicking the shortcut icon on the left side of program window.

· Load the program in program memory of DSP chip using the ‘File-load program’ pull down menu.

· Run the program and observe output using graph utility.

OUT PUT:

[image: image528.png]= Graph Property Dialog

Display Type Dual Time
inpuf

Interleaved Data Sources No

Start Address - upper display %

Start Address - lower display iobufer

Acaistion Bulfer Size 128

Index Increment 1

Display Data Size 128

DSP Data Type 32t floating point

Sampling Rate (Hz) 1

Plot Data From Leftto Right

Leftshited Data Display Yes

Autoscale on

DCValue i

Aes Display On

Time Display Unit s

Carcel | e || 3, 024298 g3, - Time Ao scale
-stack option to change the default size. B E
wplete,
rs, 4 Warnings, 0 Remarks.

Build / Messages J, Staout /|

sju breakpoint in, Col 1

3

[image: image529.png]= Graph Property Dialog

Display Type
Graph Ti

Start Ackress
Acquisiion Bulfe Size:
Indes Increment

Display Data Size

DSP Data Type
Sampling Rate (Hz)

Plot Data From
Leftshited Data Display
Autoscale

DCVakie

v Display

Time Display Urit

Status Bar Display
Magnitude Display Scale

Single Time
PSD OUTPUT|

“

128

1

128

324t floating point
1

Leftio Right

Yes

on

0

on

on

Linear

OK | Concel | o |[(e3, 52.0099) ftme

in utoscale |

-stack option to change the default size.

plete,

S, 4 Warnings, 0 Remarks.

Build { Messages A Staaut]| « | | >
siw breakoain: T T ni,cot [

RESULT: Verified power spectrum of a given sequence using DSP 6713 processor.

EXPERIMENT -8

IIR FILTER DESIGN USING TMS320C6713 DSP PROCESSOR
AIM:

 The aim of this laboratory exercise is to design and implement a Digital IIR Filter & observe its frequency response.
EQUIPMENTS:

TMS 320C6713 Kit.

Oscilloscope & Function Generator

RS232 Serial Cable

Power Cord

Operating System – Windows XP

Software – CCStudio_v3.1

THEORY:

An Infinite impulse response (IIR) filter possesses an output response to an impulse which is of an infinite duration. The impulse response is "infinite" since there is feedback in the filter, that is if you put in an impulse ,then its output must produced for infinite duration of time. The IIR filter can realize both the poles and zeroes of a system because it has a rational transfer function, described by polynomials in z in both the numerator and the denominator:

[image: image530.wmf]å

å

=

-

=

-

N

k

k

k

M

k

k

k

Z

a

z

b

z

H

1

0

)

(

(1)

The difference equation for such a system is described by the following:

[image: image531.wmf]å

å

=

=

-

+

-

=

N

k

k

M

k

k

k

n

y

a

k

n

x

b

n

y

1

0

)

(

)

(

)

(

(2)

M and N are order of the two polynomials bk and ak are the filter coefficients. These filter coefficients are generated using FDS (Filter Design software or Digital Filter design package).

PROGRAM:

‘C’ PROGRAM TO IMPLEMENT IIR FILTER

#include<stdio.h>

#include<math.h>

int i,w,wc,c,N;

float H[100];

float mul(float, int);

void main()

{

printf("\n enter order of filter ");

scanf("%d",&N);

printf("\n enter the cutoff freq ");

scanf("%d",&wc);

printf("\n enter the choice for IIR filter 1. LPF 2.HPF ");

scanf("%d",&c);

switch(c)

{

case 1:

for(w=0;w<100;w++)

{

H[w]=1/sqrt(1+mul((w/(float)wc),2*N));

printf("H[%d]=%f\n",w,H[w]);

}

break;

case 2:

for(w=0;w<=100;w++)

{

H[w]=1/sqrt(1+mul((float)wc/w,2*N));

printf("H[%d]=%f\n",w,H[w]);

}

break;

}}

float mul(float a,int x)

{

for(i=0;i<x-1;i++)

a*=a;

return(a);

}

OUTPUT:

 OUTPUT FOR IIR FILTER LPF

enter order of filter 2

 enter the cutoff freq 50

 enter the choice for IIR filter 1. LPF 2.HPF: 1

	[image: image532.jpg]= Graph Property Dialog, 3]

Display Type Single Time
Graph Tile IR_LPF

Start Ackress H

Aoaistion Buifer

Indes Increment 1

Display Data Size 100

DSP Data Type 324t flosting point
Sempling Rate (Hz) 1

Plot Data From Leftto Right
Leftshited Data Display Yes

Autoscale on

DCVake 0

v Display on

Time Display Uit s

Status Bar Display on

Magnitude Display Scale Linear

DataPot Syle- Line

Gid Syle ZeroLine

Cursor Mode Data Cursar

	[image: image533.jpg][ki) 200 a0 w50 B0 700 B0 00 930

	Graph Property
	Graph

	IIR FILTER LOW PASS FILTER

OUTPUT FOR IIR FILTER HPF

enter order of filter 2

 enter the cutoff freq 50

 enter the choice for IIR filter 1. LPF 2.HPF: 2
	[image: image534.jpg]= Graph Property Dialog

Single Time
Graph Tl IIR_HPF
Start Aress H
Acaqusiion Bulfe Size: 100
Indes Increment 1
Display Data Size 100
DSP Data Type 324t flosting point
Sampling Rate (Hz) 1
Plot Data From Leftto Right
Leftshited Data Display Yes
Autoscale on
DCVakie 0
v Display on
Time Display Urit s
Status Bar Display on
Magnitude Display Scale Linear
DataPot Syle- Line
Gid Syle ZeroLine
Cursor Mode Data Cursar
Carcel | Help

	[image: image535.jpg]“0248]

“n.age:

0745

0%

q 027030500 A 0 G A 60,5 57010 L 80 D 850 0 P

	Graph Property
	Graph

	IIR FILTER HIGH PASS FILTER

RESULT: Verified IIR low pass and high pass filters using 6713 processor.

The total response � QUOTE � ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

DEPT OF ECE MREC (A)

_1392227756.unknown

_1392227760.unknown

_1392227764.unknown

_1392227769.unknown

_1392227770.unknown

_1392227766.unknown

_1392227767.unknown

_1392227768.unknown

_1392227765.unknown

_1392227762.unknown

_1392227763.unknown

_1392227761.unknown

_1392227758.unknown

_1392227759.unknown

_1392227757.unknown

_1392227752.unknown

_1392227754.unknown

_1392227755.unknown

_1392227753.unknown

_1392227750.unknown

_1392227751.unknown

_1392227748.unknown

